自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(70)
  • 资源 (5)

原创 Detecting Urban Changes With Recurrent Neural Network From Multitemporal Sentinel SENTINEL-2 Data

论文地址:IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing SymposiumIEEE, 2019.ABSTRACT本文结合了fully convolutional networks (similar to U-Net) for feature representation 和recur...

2020-03-31 13:40:03 161 1

原创 Anaconda换源

清华源根据官方手册中的说明Anaconda 安装包可以到 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 下载。TUNA 提供了 Anaconda 仓库与第三方源(conda-forge、msys2、pytorch等,查看完整列表)的镜像,各系统都可以通过修改用户目录下的 .condarc 文件。Windows 用户无法...

2020-03-30 17:43:46 2214

原创 Fully convolutional siamese networks for change detection

arXiv:1810.08462v1 [cs.CV] 19 Oct 2018论文地址:ABSTRACT提出三种全卷积的结构用于已配准的图像对的变化检测,可检测RGB和多光谱的图像。从头的监督训练,比related systems 快500倍。1. INTRODUCTION...

2020-03-18 16:29:34 675

原创 Deep Generative Model

PixelRNN把逐个像素放入网络中,output为下一个像素Variational Autoencoder(VAE)这里要同时Minimize reconstruction error和为什么要使用VAE而不直接用auto-encoder呢?从直觉上来说,VAE相当于在中间的code上家里noise只minimize 它们的 reconstruction e...

2020-03-16 11:46:51 88

原创 Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images

论文地址:https://sci-hub.ren/10.1109/lgrs.2017.2738149Abstract提出了一种基于深度孪生卷积网络的新型有监督变化检测方法,用于光学航空图像。 我们使用加权对比损失训练孪生卷积网络。 该方法的新颖之处在于,可以学习孪生网络以直接从图像对中提取特征。 与传统的变化检测方法使用的手工特征相比,提取的特征更加抽象和强大。 此外,由于加权对比损...

2020-03-14 16:21:38 486 3

原创 Ensemble

BaggingBagging一般用在容易overfitting的model上1. “制造"不同的data假设现在有 个 training data,对这 个data 做 Sampling。每次取个data组成一个新的dataset ,每次抽取后要把这个 data 再放回(with replacement)。通常,= (每个dataset并不会一样,因为会 samping 到...

2020-03-13 11:08:04 45

原创 Urban change detection for multispectral earth observation using convolution neural network

Urban change detection for multispectral earth observation using convolution neural networkarXiv:1810.08468v1 [cs.CV] 19 Oct 2018论文地址:https://arxiv.org/abs/1810.08468ABSTRACT本文探讨了使用CNN对多光...

2020-03-11 23:41:42 484 3

原创 遥感图像变化检测数据集

1.武汉多时相场景变化检测数据集 (MtS-WH)Multi-temp Scene Wuhan(MtS-WH) 数据集主要用于进行场景变化检测的方法理论研究与验证。场景变化检测就是在场景语义的层次上,对一定范围区域的土地利用属性变化情况进行检测和分析。本数据集主要包括两张由IKONOS传感器获得的VHR图像,大小为7200 x 6000的大尺寸高分辨率遥感影像。覆盖范围为中国武汉市汉阳区...

2020-02-29 17:20:40 3489

原创 leetcode 53. 最大子序和

// 贪心法class Solution {public: int maxSubArray(vector<int>& nums) { int maxnum, sum; int i, flag = 1; for(i = 0; i < size(nums); i++){ if(i == ...

2020-02-27 23:00:54 33

原创 Learning to Measure Changes: Fully Convolutional Siamese Metric Networks for Scene Change Detection

原文:https://arxiv.org/abs/1810.09111Code:https://github.com/gmayday1997/ChangeDetAbstract提出了一种全卷积孪生度量网络 fully Convolutional siamese metric Network(CosimNet) 。可以通过自定义隐式度量来度量变化。 要了解更多判别指标,我们利用对比...

2020-02-23 19:16:46 436

原创 leetcode 21 合并两个有序链表

/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */class Solution {public: ListNo...

2020-02-23 16:08:23 48

原创 Convolutional Neural Network Features Based Change Detection in Satellite Images 翻译

基于卷积神经网络特征的卫星图像变化检测Mohammed El Amin, A., Liu, Q., & Wang, Y. (2016)原文地址:http://sci-hub.ren/10.1117/12.2243798主要内容:把要比较的图像图像I1和I2通过“divide to grid”的方式放入pre-trained 的改动了的AlexNet 中,把5个卷积层的fe...

2020-02-09 23:26:12 291 3

原创 DOTA: A Large-scale Dataset for Object Detection in Aerial Images 翻译

DOTA:用于航空图像中目标检测的大规模数据集原文:https://arxiv.org/pdf/1711.10398.pdf官网:https://captain-whu.github.io/DOTA/dataset:https://captain-whu.github.io/DOTA/dataset.htmlAbstract对象检测是计算机视觉中一个重要且具有挑战性的问题。 尽...

2020-02-07 11:04:20 744

原创 Image Enhancement

图像增强空间域法:在原图像上直接对像素的灰度值进行处理,分为两类,点运算和局部运算(邻域有关的空间域运算)。频域法:在图像的变换域上进行处理,增强感兴趣的频率分量,然后进行反变换,得到了增强的图像。 空间域 1. 灰度变换1.1 图像灰度变换灰度变换是按一定变换关系,逐点改变原图像中每一个像素灰度值的方法。是图像增强技术中一种非常基础、直接的空间域处理方法。目的是...

2020-02-05 11:01:51 195

原创 Unsupervised Learning:Neighbor Embedding

Unsupervised Learning:Neighbor Embedding(非线性降维)Manifold Learning将高维空间的 Manifold 映射到低维空间“摊平”,这样就可以计算他的直线距离,以便于聚类和监督学习Locally Linear Embedding (LLE)也就是说,我们先在高维空间中通过minimize 找到Xi和Xj的关系Wij...

2020-01-27 17:07:43 69

原创 Unsupervised Learning: Word Embedding

Unsupervised Learning: Word EmbeddingWord Embedding 是 Dimension Reduction 的一种应用。要用一个vector来表示一个word,有什么方法呢: 1-of-N Encoding: 每一个词汇对应vector的一维,如:这种方式没法体现出word之间的关系,无法表达出语义 Word Class: ...

2020-01-27 10:35:34 139

原创 pytorch 张量的操作

Tensor Operation1. 张量拼接与切分torch.cat():将张量的维度dim进行拼接,不会扩张张量的维度 如dim=0,则两个向量将在第0维进行拼接:(3,4)concat(3,4)-->(6,4)torch.stack():在新创建的维度dim上进行拼接 如dim=0,则(3,...

2020-01-14 13:53:37 122

原创 pytorch tensor创建

create tensor1. torch.tensor():从data创建tensordata可以是list,numpy;dtype默认与data一致。2. torch.from_numpy(ndarray):从numpy创建tensor这里创建的tensor与原ndarray共享内存,一个改变另一个就会改变。3.torch.zeros():依size创建全0张量...

2020-01-13 21:22:01 208

原创 transfer learning

OverviewTASK 1Model Fine-tuning用source data训练一个模型,然后用target data去微调。需要注意的是target data的过拟合。处理方案:Conservative training:我们希望fine tuning后新的network和旧的network的output是差不多的1. 如果我们的targe...

2020-01-13 11:45:03 110

原创 如何在Jupyter Notebook切换conda环境

1. 在你的jupyter notebook环境安装nb_conda_kernelsconda install -n notebook_env nb_conda_kernels2. 如果你用的python,在你要导入的conda环境下安装ipykernelconda install -n python_env ipykernel3. 如果你用的R,则conda inst...

2020-01-11 20:20:01 140

原创 chapter 2 数字图像存储与读取 Remote sensing digital image processing

Remote sensing digital image processingchapter2 数字图像存储与读取2.1 多波段数据存储方式遥感多波段图像逐波段存储BSQ逐行存储BIL逐像元存储BIPBSQ、BIP、BIL三种存储方式的优劣存储方式设置错误对图像读取的影响2.1 图像文件存储的基本信息图像元文件●图像元文件存...

2020-01-10 21:24:37 151

原创 leetcode 3 无重复字符的最长子串

c++:class Solution {public: int lengthOfLongestSubstring(string s) { if(s == "") return 0; int head = 0; int num = 0, p = 0; for(int i = 0; i < s.size(); i...

2020-01-03 20:25:16 27

原创 leetcode 2 两数相加

c++:// c++/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */class Solution {p...

2020-01-01 22:18:10 34

原创 chapter 1 数字图像基础 Remote sensing digital image processing

Remote sensing digital image processingchapter 1 数字图像基础1.1 图像与数字图像什么是图像:“图像”就是客观存在的二维、三维灰度或者彩色的“图”在认知感觉中所产生的“像”,它是客观和主观相结合的产物。图像分为模拟图像和数字图像:模拟图像是通过某种物理量(如光、电)的强弱变化来记录场景亮度信息的图像,如纸质照片、显示器显示的图像...

2019-12-31 20:37:56 108

原创 《Feature Engineering for Machine Learning》chapter 2

内容自《Feature Engineering for Machine Learning》Scalars, Vectors, and Spaces2.2 Dealing with Counts2.2.1 二值化(Binarization) In the Million Song Dataset, the raw listen count is not a robu...

2019-06-08 19:10:48 249 1

原创 《ML with python cookbook》: Loading Data

1.Loading a CSV Fileimport pandas as pdpath = 'F:/pycharmFile/input/train_data.csv'dataframe = pd.read_csv(path)dataframe.head(2)notes: 1. see how a dataset is structured beforehand ...

2019-05-19 23:06:58 95

原创 解决运行hbase shell时无法找到或加载主类org.jruby.Main(Could not find or load main class org.jruby.Main

我的情况:我在安装Hbase的时候磁盘空间不足(如何扩展分区),可能是没有安装全。删掉HBase,重新安装就好了

2019-04-09 22:12:02 1694

原创 centos7(VMware)扩展分区

1.首先在虚拟机上分配2. df -h 查看当前磁盘使用情况3. fdisk /dev/sda 开始分区依此键入:p  查看已分区数量(我看到有两个 /dev/sda1 /dev/sda2)n  新增加一个分区p  分区类型我们选择为主分区3  分区号选3(因为1,2已经用过了,见上)回车  默认(起始扇区)回车  默认(结束扇区)t   修改分区类型3  选分区38e  修...

2019-04-09 20:16:31 451

原创 mpi 并行计算cos(x)的积分

#include <stdio.h>#include "mpi.h"#include <math.h>#define PI acos(-1.0)int main(int argc, char**argv){ int rank, size; int n, i, start, end; double sum, psum, total...

2019-03-15 16:35:12 138

原创 Data(image) Augmentation

Data Augmentation 是 Regularization 的一种方法 可以做水平翻转可以抽取不同尺度大小的裁剪图像,在测试时,评估一些固定的裁剪图像可以做色彩抖动:还可以: code :import osimport randomfrom PIL import Imagefrom PIL import ImageEnhance...

2019-02-12 17:41:35 91

原创 HOG ( scikit-image )

from skimage import io, colorfrom skimage.feature import hogimport matplotlib.pyplot as pltpath = 'C:/Users/liky/Desktop/Face/westbrook.jpg'image = io.imread(path)image = color.rgb2gray(image)...

2019-02-11 23:40:44 229

原创 cs231n assignment2 Dropout

Dropout forward passnp.random.seed(231)x = np.random.randn(500, 500) + 10for p in [0.25, 0.4, 0.7]: out, _ = dropout_forward(x, {'mode': 'train', 'p': p}) out_test, _ = dropout_forward(x, {'...

2019-02-10 16:30:31 192

原创 cs231n assignment2 Batch Normalization

Batch normalization 优点:减少坏初始化的影响 加快模型的收敛速度 可以用大些的学习率 能有效地防止过拟合 Batch normalization: forwardimport timeimport numpy as npimport matplotlib.pyplot as pltfrom cs231n_2.classifiers.fc_net im...

2019-02-09 21:03:21 329

原创 cs231n assignment2 FullyConnectedNets

Affine layer: fowardimport timeimport numpy as npimport matplotlib.pyplot as pltfrom cs231n_2.classifiers.fc_net import *from cs231n_2.data_utils import get_CIFAR10_datafrom cs231n_2.gradient_...

2019-02-03 23:28:07 638

原创 Training Neural Networks, part II

part II :- Fancier optimization - Regularization - Transfer Learning   Optimization Problems with SGD1. 当我们在水平方向变化时,损失函数的变化非常慢而在竖直方向(等高线方向)变化时,损失值变化很快 在这样函数上,SGD:         Ve...

2019-02-02 11:32:40 114

原创 Training Neural Networks, part I

Part I :- Activation Functions - Data Preprocessing - Weight Initialization - Batch Normalization - Babysitting the Learning Process - Hyperparameter Optimization   Activation Functio...

2019-01-29 22:52:37 177

原创 cs231n assignment1 Image Features

这部分主要是对图像特征(pixel)的描述处理, 旨在了解特征处理对识别正确率的影响,分别用 SVM 和 Two-Layer Neural Network测试并和之前结果对比。部分题目说明:对于每个图像,我们将计算定向直方图渐变(HOG)以及使用HSV中的色调通道的颜色直方图色彩空间。 我们通过连接形成每个图像的最终特征向量HOG和颜色直方图特征向量。粗略地说,HOG应该在忽略颜色信息...

2019-01-27 16:21:59 223

原创 cs231n assignment1 Two-Layer Neural Network

此次的作业的目的:了解NN的结构和搭建过程:         本次实验的两层NN的结构:                                                                       相当于使用了 ReLu        最后一层用 softmax 得出 loss 理解 backpropagation:         其目...

2019-01-26 21:44:53 278

原创 Leetcode Medium 5 Letter Combinations of a Phone Number

不用递归 class Solution: def letterCombinations(self, digits): dic = {'2':'abc', '3':'def','4':'ghi', '5':'jkl', '6':'mno', '7':'pqrs', '8':'tuv', '9':'wxyz'} if not digits: ...

2019-01-22 17:16:48 53

原创 cs231n assignment1 Softmax classifier

首先,对softmax loss 有一个简单的理解Softmax loss =                 对参数W求导 至于推导过程,李弘毅老师的课程中在讲 logistic regression 的时候大概讲过类似的推导过程: 下面是代码部分:数据加载及预处理import randomimport numpy as npfro...

2019-01-22 13:09:40 155

ShanghaiTech Part B Dataset

ShanghaiTech Part B Dataset Part B Part B Part B Part B Part B Part B Part B Part B Part B Part B

2020-01-18

《计算机视觉:算法与应用》-Richard Szeliski 中文版+英文版

《计算机视觉:算法与应用》-Richard Szeliski 中文版+英文版

2019-06-06

Feature Engineering(《精通特征工程》英文版)

Feature Engineering(《精通特征工程》英文版)英文原版

2019-05-31

计算机视觉 模型、学习和推理(中文版+英文版)Computer Vision Models, Learning, and Inference

计算机视觉 模型、学习和推理(中文版加英文版)Computer Vision Models, Learning, and Inference

2019-05-31

Machine Learning with Python Cookbook

《Machine Learning with Python Cookbook》 --[Chris Albon]

2019-05-31

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除