Urban change detection for multispectral earth observation using convolution neural network

本文介绍了一种利用卷积神经网络(CNN)进行多光谱遥感图像变化检测的方法,提出了OSCD数据集及两种监督学习网络结构,专注于城市区域变化检测,解决了多通道信息利用和端到端训练问题。

arXiv:1810.08468v1  [cs.CV]  19 Oct 2018

论文地址:https://arxiv.org/abs/1810.08468

 

ABSTRACT

本文探讨了使用CNN对多光谱遥感图像的变化检测。提出了像素级标注的变化检测数据集 OneraSatellite Change Detection (OSCD) dataset,还提出了两种可用于变化检测的监督学习的网络结构,并使用OSCD进行 trained from scratch 。

1. INTRODUCTION

1.1. RelatedWork 

由于缺少 labeled dataset,最近有一些基于迁移学习的方法被提出,但它们有一些限制:比如大多数CNN网络都是用RGB三通道的数据训练的,但是多光谱图像可能有13个通道,这就使得一些通道的信息没法充分利用。

此外,最近的一些方法更多的是手动地设计阈值,而不是端到端的训练。

1.2. Contributions

主要有两点:

1. (OSCD) dataset will be openly available on the internet

2. proposal of two different CNN architectures that aim to learn end-to-end change detection from this dataset in a fully supervised manner

2. DATASET

该数据集专注于城市区域,仅urban growth and changes被标记为 Change ,而像 vegetation growth 或 sea tides 的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值