arXiv:1810.08468v1 [cs.CV] 19 Oct 2018
论文地址:https://arxiv.org/abs/1810.08468
ABSTRACT
本文探讨了使用CNN对多光谱遥感图像的变化检测。提出了像素级标注的变化检测数据集 OneraSatellite Change Detection (OSCD) dataset,还提出了两种可用于变化检测的监督学习的网络结构,并使用OSCD进行 trained from scratch 。
1. INTRODUCTION
1.1. RelatedWork
由于缺少 labeled dataset,最近有一些基于迁移学习的方法被提出,但它们有一些限制:比如大多数CNN网络都是用RGB三通道的数据训练的,但是多光谱图像可能有13个通道,这就使得一些通道的信息没法充分利用。
此外,最近的一些方法更多的是手动地设计阈值,而不是端到端的训练。
1.2. Contributions
主要有两点:
1. (OSCD) dataset will be openly available on the internet
2. proposal of two different CNN architectures that aim to learn end-to-end change detection from this dataset in a fully supervised manner
2. DATASET
该数据集专注于城市区域,仅urban growth and changes被标记为 Change ,而像 vegetation growth 或 sea tides 的

本文介绍了一种利用卷积神经网络(CNN)进行多光谱遥感图像变化检测的方法,提出了OSCD数据集及两种监督学习网络结构,专注于城市区域变化检测,解决了多通道信息利用和端到端训练问题。
最低0.47元/天 解锁文章
878

被折叠的 条评论
为什么被折叠?



