概率统计论--S1 基础知识


概率统计论重学,并希望能加上李航版本的统计方法;

1 随机事件

1.1 基本概念- 样本空间 样本点 随机事件

  1. 随机现象:就是对结果的不确定性出现的现象;一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种,称这种现象为随机现象。
  2. 样本空间:随机试验的所有可能结果组成的集合;
  3. 样本点:试验的每一个可能结果称为样本点;
  4. 随机事件:样本空间中满足一定条件的子集。用大写字母A,B,C…表示;样本空间就是必然事件,空集是不可能事件。
    Case: 掷骰子例子:
    掷骰子游戏中,我们知道出现的结果可能是1,2,3,4,5,6其中的任意一个数字。那么出现任何一个数字,都可以成为一个样本点;随机事件是什么呢,就是一些样本点的的集合,当然了,是在一定条件下。比如,出现的数字是偶数的结果。那么2,4,6就够成了一个随机事件A=2,4,6。样本空间就是1到6的六个数字Ω=1,2,3,4,5,6。可以看到A 是Ω的一个子集。空集可以定义ϕ为结果的数字大于6,显然是不可能出现的。

1.2 概率

定义:随机试验E的样本空间为Ω,对于每个事件A,定义一个实数P(A)与之对应,若函数P(.)满足条件:

  • 对每个事件A,均有0<P(A)<=1;
  • P(Ω)=1;
  • 若事件A1,A2,A3,…两两互斥,即对于i,j=1,2,…,i≠j,Ai∩Aj=ϕ,均有P(A1∪A2∪…)=P(A1)+P(A2)+…
    则称P(A)为事件A的概率。

1.2.1 主要性质

  • 对于任一事件A,均有P(A¯¯¯¯)=1−P(A).
  • 对于两个事件A和B,若A⊂B,则有P(B−A)=P(B)−P(A),P(B)>P(A).
  • 对于任意两个事件A和B,有P(A∪B)=P(A)+P(B)−P(A∩B).
    Csse:掷骰子
    掷骰子中,1,2,3,4,5,6出现的概率均为1/6。 我们令 A=1,2,B=1,2,3。那么有A¯¯¯¯=3,4,5,6。可以看到,出现1或2的概率为1/3,即P(A)=1/3;出现1或2或3的概率为1/2,即P(B)=1/2。根据性质我们有
  • P(A反)=1−P(A)=1−1/3=2/3,也就是出现3或4或5或6的概率;
  • P(B−A)=1−P(B)−P(A)=1/2−1/3=1/6,也就是出现3的概率;
  • P(A∪B)=P(A)+P(B)−P(A∩B)=1/3+1/2−1/3=1/2,也就是出现的1或2或3,也就是事件B的概率;因为A⊂B。这里的A∩B=A=1,2。

1.3 古典概率

  • 定义:
    我们将掷骰子游戏进行推广,设随机事件 E 的样本空间中只有有限个样本点,即 Ω=ω1,ω2,…,ωn,其中, n 为样本点的总数。每个样本点ωi(i=1,2,…,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。若事件 A 包含个m 个样本点,则事件 A 的概率定义为:
    P(A)=mn=事件A包含的基本事件数基本事件总数。
    ** 不要以为古典概率就只是数数,加入排列组合就有会难了,但是不要纠结,只要搜出答案公式就行**

1.4 条件概率

用来研究随机事件之间的关系时,在已知某些事件发生的条件下考虑另一些事件发生的概率规律有无变化及如何变化,是十分重要的。
定义:设 A 和 B 是两个事件,且P(B)>0,称 P(A|B)=P(AB)P(B) 为在事件 B 发生的条件下,事件 A 发生的概率。
Case:
*某集体中有 N 个男人和 M 个女人,其中患色盲者男性 n 人,女性 m 人。我们用 Ω 表示该集体, A 表示其中全体女性的集合,B 表示其中全体色盲者的集合。

  • 如果从 Ω 中随意抽取一人,则这个人分别是女性、色盲者和同时既为女性又是色盲者的概率分别为:
    P(A)=MM+N,P(B)=m+nM+N,P(AB)=mM+N
  • 如果限定只从女性中随机抽取一人**(即事件 A 已发生),那么这个女人为色盲者的(条件)*概率为
    P(B|A)=mM=P(AB)P(A)

1.5 全概率公式和贝叶斯概率

  • 概率乘法公式:P(AB)=P(B|A)P(A)=P(A|B)P(B)
  • 样本空间划分:如果事件组,满足B1,B2,… 两两互斥,即Bi∩Bj=ϕ,B1∪B2∪…=Ω。则称事件组B1,B2,…是样本空间 Ω 的一个划分。
  1. 全概率公式
    设B1,B2,…是样本空间 Ω 的一个划分,A 为任一事件,则
    ​ P(A)=∑∞i=1P(Bi)P(A|Bi)
    称为全概率公式。
    根据全概率公式和概率乘法公式,我们可以得到:P(A)=∑∞i=1P(ABi)

  2. 贝叶斯公式
    设B1,B2,…是样本空间 Ω 的一个划分,则对任一事件 A(P(A)>0) ,有 P(Bi|A)=P(BiA)/P(A)=P(A|Bi)P(Bi)/∑∞j=1P(Bj)P(A|Bj),i=1,2,…
    称上式为贝叶斯公式,称P(Bi)(i=1,2,…) 为先验概率,P(Bi|A)(i=1,2,…)为后验概率。
    理解:在实际中,常取对样本空间 Ω 的有限划分 B1,B2,…,Bn 。 Bi 视为导致试验结果 A 发生的“原因”,而P(Bi) 表示各种“原因”发生的可能性大小,故称为先验概率;P(Bi|A) 则反应当试验产生了结果 A 之后,再对各种“原因”概率的新认识,故称为后验概率 。

随机变量

继续

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值