数论线性筛总结 (素数筛,欧拉函数筛,莫比乌斯函数筛,前n个数的约数个数筛)
线性筛
线性筛在数论中起着至关重要的作用,可以大大降低求解一些问题的时间复杂度,使用线性筛有个前提(除了素数筛)所求函数必须是数论上定义的积性函数,即对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数,若a,b不互质也满足的话则称作完全积性函数,下面说明每个筛子是怎么筛的。
最基础的是素数筛,其它
转载
2017-05-08 07:14:26 ·
416 阅读 ·
0 评论