题目描述
给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。
求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。
输出这个最大值。
注意:数据保证至少存在一个环。
输入格式
第一行包含两个整数L和P。
接下来L行每行一个整数,表示f[i]。
再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。
输出格式
输出一个数表示结果,保留两位小数。
数据范围
2≤L≤1000,
2≤P≤5000,
1≤f[i],t[i]≤1000
输入样例
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例
6.00
题目分析
因为答案是求一个最大值,因此我们可以通过二分来计算答案。
设当前的二分值为mid,点权的值为f[i],边权的值为t[i]。
如果mid<=ans,则说明存在一个环且环上的点权和sum(f[i])/环上的边权和sum(t[i])>=mid。然后,我们可以将这个公式进行一下变形:
sum(f[i])/sum(t[i])>=mid
sum(f[i])>=sum(t[i])*mid
sum(f[i])-sum(t[i])*mid>=0
sum(f[i]-t[i]*mid)>=0 => 是否图中存在一个正环使得该式成立
这样我们的check函数就只需要写一个spfa求一下正环(求正环和求负环的写法基本是一样的)即可。
代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <queue>
#include <vector>
#include <set>
#include <algorithm>
#define LL long long
#define ULL unsigned long long
#define PII pair<int,int>
#define x first
#define y second
using namespace std;
const int N=1e3+5,M=5e3+5,INF=0x3f3f3f3f;
int n,m;
int h[N],e[M],w[M],ne[M],idx;
int a[N],cnt[N]; //a[] 记录点权,cnt[] 记录迭代次数
double dist[N]; //记录公式sum(f[i]-t[i]*mid)的值
bool st[N];
void add(int a,int b,int c) //加边函数
{
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
bool check(double mid) //检查mid的值是否合法
{
memset(st,0,sizeof st); //初始化
memset(cnt,0,sizeof cnt);
memset(dist,0,sizeof dist); //因为我们是要让点权/边权值最大,所有我们要求最大值,进而dist要初始化为0
queue<int> q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
int u=q.front();
q.pop();
st[u]=false;
for(int i=h[u];~i;i=ne[i])
{
int v=e[i];
if(dist[v]<dist[u]+a[u]-mid*w[i]) //更新最大值
{
dist[v]=dist[u]+a[u]-mid*w[i];
cnt[v]=cnt[u]+1; //更新迭代次数
if(cnt[v]>=n) return true; //如果某一点的迭代次数>=n,则说明有正环
if(!st[v])
{
q.push(v);
st[v]=true;
}
}
}
}
return false;
}
int main()
{
memset(h,-1,sizeof h);
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(m--) //建图
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
add(u,v,w);
}
double l=0,r=1e6; //浮点数的二分(模板)
while(r-l>1e-5)
{
double mid=(l+r)/2;
if(check(mid)) l=mid; //如果mid合法,那么看看是否有更大的解
else r=mid; //否则是否mid过大,应该减小
}
printf("%.2lf\n",l); //输出答案(对于浮点数二分来说,输出l,r均可)
return 0;
}