观光奶牛(01分数规划)

题目描述

给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。
求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。
输出这个最大值。
注意:数据保证至少存在一个环。

输入格式

第一行包含两个整数L和P。
接下来L行每行一个整数,表示f[i]。
再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。

输出格式

输出一个数表示结果,保留两位小数。

数据范围

2≤L≤1000,
2≤P≤5000,
1≤f[i],t[i]≤1000

输入样例
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例
6.00

题目分析

因为答案是求一个最大值,因此我们可以通过二分来计算答案。

设当前的二分值为mid,点权的值为f[i],边权的值为t[i]。
如果mid<=ans,则说明存在一个环且环上的点权和sum(f[i])/环上的边权和sum(t[i])>=mid。然后,我们可以将这个公式进行一下变形:
sum(f[i])/sum(t[i])>=mid
sum(f[i])>=sum(t[i])*mid
sum(f[i])-sum(t[i])*mid>=0
sum(f[i]-t[i]*mid)>=0 => 是否图中存在一个正环使得该式成立

这样我们的check函数就只需要写一个spfa求一下正环(求正环和求负环的写法基本是一样的)即可。

代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <queue>
#include <vector>
#include <set>
#include <algorithm>
#define LL long long
#define ULL unsigned long long
#define PII pair<int,int>
#define x first
#define y second
using namespace std;
const int N=1e3+5,M=5e3+5,INF=0x3f3f3f3f;
int n,m;
int h[N],e[M],w[M],ne[M],idx;
int a[N],cnt[N];		//a[] 记录点权,cnt[] 记录迭代次数
double dist[N];			//记录公式sum(f[i]-t[i]*mid)的值
bool st[N];
void add(int a,int b,int c)		//加边函数
{
    e[idx]=b;
    w[idx]=c;
    ne[idx]=h[a];
    h[a]=idx++;
}
bool check(double mid)			//检查mid的值是否合法
{
    memset(st,0,sizeof st);		//初始化
    memset(cnt,0,sizeof cnt);
    memset(dist,0,sizeof dist);	//因为我们是要让点权/边权值最大,所有我们要求最大值,进而dist要初始化为0
    queue<int> q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        int u=q.front();
        q.pop();
        st[u]=false;

        for(int i=h[u];~i;i=ne[i])
        {
            int v=e[i];
            if(dist[v]<dist[u]+a[u]-mid*w[i])	//更新最大值
            {
                dist[v]=dist[u]+a[u]-mid*w[i];
                cnt[v]=cnt[u]+1;				//更新迭代次数
                if(cnt[v]>=n) return true;		//如果某一点的迭代次数>=n,则说明有正环
                if(!st[v])
                {
                    q.push(v);
                    st[v]=true;
                }
            }
        }
    }
    return false;
}
int main()
{
    memset(h,-1,sizeof h);
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    while(m--)					//建图
    {
        int u,v,w;
        scanf("%d %d %d",&u,&v,&w);
        add(u,v,w);
    }
    double l=0,r=1e6;			//浮点数的二分(模板)
    while(r-l>1e-5)
    {
        double mid=(l+r)/2;
        if(check(mid)) l=mid;	//如果mid合法,那么看看是否有更大的解
        else r=mid;				//否则是否mid过大,应该减小
    }
    printf("%.2lf\n",l);		//输出答案(对于浮点数二分来说,输出l,r均可)
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lwz_159

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值