mooc作业题:list leaves
本题主要考察建树的基本功和层序遍历
题目描述
Given a tree, you are supposed to list all the leaves in the order of top down, and left to right.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤10) which is the total number of nodes in the tree – and hence the nodes are numbered from 0 to N−1. Then N lines follow, each corresponds to a node, and gives the indices of the left and right children of the node. If the child does not exist, a “-” will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in one line all the leaves’ indices in the order of top down, and left to right. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
Sample Output:
4 1 5
思路:
最关键的是建树的方法,这里我们采用静态链表建立二叉树。
而层序遍历的关键是采用队列结构,如果有子节点则从左到右依次放入队列中,如果没有子节点就直接输出。
#include<cstdlib>
#include<stdio.h>
#include<deque>
#define MaxSize 10
#define Tree int
#define Null -1
using namespace std;
struct TreeNode //定义
{
Tree left;
Tree right;
}T[MaxSize]; //用数组储存所有节点
Tree BuidTree()
{
int n, i, root = Null, check[MaxSize];
char cl, cr;
scanf("%d", &n);
if(n){
for(i = 0; i < n; i++) check[i] = 0; //用于储存输入的节点的孩子编号,最后check中为0的是根节点
for(i = 0; i < n; i++){
getchar(); //字符串赋值
scanf("%c %c", &cl, &cr);
if(cl != '-'){
T[i].left = cl - '0';
check[T[i].left] = 1;
}else T[i].left = Null;
if(cr != '-'){
T[i].right = cr - '0';
check[T[i].right] = 1;
}else T[i].right = Null;
}
for(i = 0; i < n; i++) if(!check[i]) break; //寻找根节点
root = i;
}
return root;
}
void traversal(int root)
{
if(root == Null) //特殊情况
return;
deque<int> d; //用队列层序遍历
d.push_back(root);
int p; int flag = 1;
while(!d.empty()){
p = d.front(); d.pop_front();
if(T[p].left != Null) d.push_back(T[p].left);
if(T[p].right != Null) d.push_back(T[p].right);
if(T[p].left == Null &&T[p].right == Null){
if(flag) {printf("%d", p); flag = 0;}
else printf(" %d", p);
}
}
}
int main()
{
int root;
root = BuidTree();
traversal(root);
return 0;
}