无剑无我
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3811 Accepted Submission(s): 2429
北宋末年,奸臣当道,宦官掌权,外侮日亟,辽军再犯。时下战火连连,烽烟四起,哀鸿遍野,民不聊生,又有众多能人异士群起而反,天下志士云集响应,景粮影从。
值此危急存亡之秋,在一个与世隔绝的地方---MCA山上一位江湖人称<英雄哪里出来>的人正在为抗击辽贼研究剑法,终于于一雷电交加之夜精确计算出了荡剑回锋的剑气伤害公式。
定义 f(x, y, m, n) = sqrt(x*x + y*y + m*m + n*n - 2*m*x - 2*n*y);
hint : sqrt表示开方,即sqrt(4) = 2; sqrt(16) = 4;
(其中x,y为位置变量,m,n为属性常量)
剑气伤害 = f(x, y, a, b) + f(x, y, c, d);
剑气威力巨大无比,实难控制,现在他想知道剑气伤害的最小伤害值。
Input
首先输入一个t,表示有t组数据,跟着t行:
输入四个实数a,b,c,d均小于等于100
Output
输出剑气的最小伤害值M,保留小数点后一位
(可以使用.1lf)
Sample Input
2
0 0 3 4
4 0 0 3
Sample Output
5.0
5.0
Author
英雄哪里出来
Source
2008“缤纷下沙校园文化活动月”之大学生程序设计竞赛暨新生专场
题目大意: 给你公式f(x, y, m, n) ,再给你a,b,c,d,剑气的伤害为:f(x, y, a, b)+f(x, y, c, d)
其中x,y为变量,a、b、c、d是所给常量,求出剑气最小伤害为多少。
思路:f(x, y, m, n) = sqrt(x*x + y*y + m*m + n*n - 2*m*x - 2*n*y) = sqrt( (x-m)^2 + (y-n)^2 )
剑气伤害为:sqrt( (x-a)^2 + (y-b)^2 ) + sqrt( (x-c)^2 + (y-d)^2 ),即求点(a,b)和点(c,d)到某
点(x,y)的最短距离和。若想是距离最短,则点(x,y)肯定是点(a,b)和点(c,d)所连线段上一点,最
短距离即为点(a,b)到点(c,d)的距离,即sqrt( (c-a)^2 + (d-b)^2 )。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int main()
{
int T;
cin >> T;
double x1,y1,x2,y2;
while(T--)
{
cin >> x1 >> y1 >> x2 >> y2;
double ans = sqrt( (y2-y1)*(y2-y1)+(x2-x1)*(x2-x1) );
printf("%.1lf\n",ans);
}
return 0;
}