poj 1273 dinic

题目描述:有m个池塘(从1到m开始编号,1为源点,m为汇点),及n条水渠,给出这n条水渠所连接的池塘和所能流过的水量,求水渠中所能流过的水的最大容量.一道基础最大流题目

所用算法:dinic

算法描述:写最大流有EK算法和dinic算法。开始先学的是EK 算法,由于时间所迫吧,只能从这两个算法之中选取一个作为常解决问题的一个算法。所了解,dinic在数据较大时比EK高效,所以选取了dinic。此算法用到广搜和深搜的结合,用一次BFS 找出层次网络,然后在所找的层次网络中用DFS搜索增广路。这道题其实就是dinic模板题,所做的所有最大流题目中,并没有接触到算法的变形,有的只是问题的模型化和建图的难点。所以在这里简单介绍下算法能解决的具体问题吧,可能随着以后的锻炼,会有新的领悟并在此更新。

问题描述:问题中描绘的是一个有向图的模型,根据算法的需要,需要把图建为双向图(和无向图含义有所区别)。在这个图中可能有多个源点和汇点,也可能只有一个源点和汇点,一般情况下都化为一个源点和汇点。在这个双向图中每条边都有各自的管道容量,当然是单向的容量,反向的容量为0,所求流到汇点时的最大流量。

#include<stdio.h>
#include<queue>
#include<iostream>
#include<string.h>
using namespace std;
#define N 210
#define INF 0x3f3f3f3f
int n,m,k,s,t;
int head[N],d[N];
struct E
{
	int u,v,c,next;
}edge[N<<1];
void addedge(int u,int v,int c)
{
	edge[k].u=u;
	edge[k].v=v;
	edge[k].c=c;
	edge[k].next=head[u];
	head[u]=k++;
	edge[k].u=v;
	edge[k].v=u;
	edge[k].next=head[v];
	head[v]=k++;
}
int min(int a,int b)
{
	return a<b?a:b;
}
int bfs()
{
	int i,cur;
	memset(d,-1,sizeof(d));
	queue<int> q;
	d[s]=0;
	q.push(s);
	while(!q.empty())
	{
      cur=q.front();
	  q.pop();
	  for(i=head[cur];i!=-1;i=edge[i].next)
	  {
		  if(d[edge[i].v]==-1&&edge[i].c>0)
		  {
			  d[edge[i].v]=d[cur]+1;
			  q.push(edge[i].v);
		  }
	  }
	}
	if(d[t]<0)
		return 0;
	return 1;
}
int dinic(int x,int flow)
{
	int i,a;
	if(x==t)
		return flow;
	int sum=flow;
	for(i=head[x];i!=-1;i=edge[i].next)
	{
		if(d[edge[i].v]==d[x]+1&&edge[i].c>0)
		{
			a=dinic(edge[i].v,min(edge[i].c,sum));
			edge[i].c-=a;
			edge[i^1].c+=a;
			sum-=a;
		}
	}
		return flow-sum;
}
void solve()
{
	int ans=0,increment;
	while(bfs())
	{
		increment=dinic(1,INF);
		ans+=increment;
	}
	cout<<ans<<endl;
}
int main()
{
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		int i,u,v,c;
		k=0;
		s=1;
		t=n;
		memset(head,-1,sizeof(head));
		for(i=0;i<m;i++)
		{
			cin>>u>>v>>c;
			addedge(u,v,c);
		}
		solve();
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值