KM算法(最优匹配)

最优匹配看了好多天,哎,就是因为一个细节问题没注意到委屈,不知道网上的讲的不清还是本人智商不够委屈,现在把我的误区说一下吧,顺便讲一下KM 算法,希望看KM算法的知识青年能少走弯路生气

KM算法是解决最优匹配问题的,关于最优匹配的相关术语网上说的很详细,可以先参考这个网站看下,http://philoscience.iteye.com/blog/1754498,本博客建立在此网站的基础上做的补充,是因为限于时间吧不能写的很详尽,希望对大家能有所帮助。

直入主题吧

最优匹配:举个栗子,比如为每边输入n(n=5吧)个顶点,编号为(x0,x1,x2,x3,x4,,y0,y1,y2,y3,y4),首先为左侧顶点(即xi)寻找增广路

lx和ly的初始化

(0)为x0找增广路,即找到y4

(1)为x1找增广路,即符合lx[cur]+ly[y]-g[cur][y],例如即lx[x1]+ly[y4]-g[x1][y4]=0的条件,即寻增广路的路径为x1->y4->x0,x0没有路可寻,所以这形成了一棵交错树

即执行标杆的修改


即连接y0,x1

即这时的x1找到一条增广路x1->y0,修改后的匹配为


(2)为x2寻找增广路

同理因为lx[x2]+ly[y0]=7=map[x2][y0],即按照这个原理沿途寻增广路x2->y0->x1->y4->x0;

执行标杆的修改(即lx[i],ly[i])


即虽然x0,y2和x1,y2同值,但根据交错路,连接y2,x1


即连接后的路径为x2->y0->x1->y2,找的新的匹配边


(3)为x3找边:因为lx[x3]+ly[y0]=7!=6=map[x3][y0],所以这棵交错树上就x3这一个顶点

找增广路失败,即把x3的标杆值lx[3]-1,既得图


再次寻找:x3->yo->x2,修改标杆的值为:

如图为

即找到新的增广路:x3->y0->x2->y1;

如图:

(4)为x4寻找择增广路,因为lx[x4]+ly[y0]=10!=map[x4][y0]=8,沿途x4,交错树中只有x4一个顶点,进行修改标杆操作:

如图:


继续为x4寻找增广路:因为lx[x4]+ly[y0]=8=map[x4][y0],利用这个原理寻找x4的增广路:x4->y0->x3;

进行修改标杆:


即连接x3,y2:

匹配失败

限于时间,先匹配到这里吧;

最优匹配模板:

#include<stdio.h>
#include<string.h>
const int maxn=305;
const int INF=(1<<30)-1;
int g[maxn][maxn];
int lx[maxn],ly[maxn];
int match[maxn];
bool visx[maxn],visy[maxn];
int slack[maxn];
int n;
bool dfs(int cur)
{
	int y,t;
	visx[cur]=true;
	for(y=1;y<=n;y++)
	{
		if(visy[y])
		continue;
		t=lx[cur]+ly[y]-g[cur][y];
		if(t==0)
		{
			visy[y]=true;
			if(match[y]==-1||dfs(match[y]))
			{
				match[y]=cur;
				return true;
			}
		}
		else if(slack[y]>t)
			slack[y]=t;
	}
    return false;
}
int KM()
{
	int i,j,x;
	memset(match,-1,sizeof(match));
	memset(ly,0,sizeof(ly));
	for(i=1;i<=n;i++)
	{
		lx[i]=-INF;
		for(j=1;j<=n;j++)
			if(g[i][j]>lx[i])
			lx[i]=g[i][j];
	}//对ly[i]置0,对lx[i]取每行的最大值
	for(x=1;x<=n;x++)
	{
		for(i=1;i<=n;i++)
		slack[i]=INF;
		while(true)
		{
			memset(visx,false,sizeof(visx));
			memset(visy,false,sizeof(visy));
			if(dfs(x))
				break;
			int d=INF;
			for(i=1;i<=n;i++)
			{
				if(!visy[i]&&d>slack[i])
					d=slack[i];
			}
			for(i=1;i<=n;i++)
			{
				if(visx[i])
				lx[i]-=d;
			}
			for(i=1;i<=n;i++)
			{
				if(visy[i])
				ly[i]+=d;
				else
				slack[i]-=d;
			}
		}
	}
	int result=0;
	for(i=1;i<=n;i++)
		if(match[i]>-1)
		result+=g[match[i]][i];
	return result;
}
int main()
{
	int cost,i,j;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				scanf("%d",&cost);
			    g[i][j]=cost;
			}
		}
		printf("%d\n",KM());
	}
	return 0;
}

  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值