离散数学相关知识(上)

1.质数:

质数的判定:

试除法:

bool is_prime(int n){
	if(n<2) return false;
	for(int i=2;i<n;i++)
		if(n%i==0)
				return false;
	return true;
上面的时间复杂度为o(n)的吗,很暴力
我们对着上面的式子进行优化,结合质数的性质,质数都是成对出现的。所以我们只需要列出最小的一个就可以了
假设d为其中一个,n/d就是另外一个  d<n/d  d<根号(n)
所以改成for(int i=2;i<sqrt(n);i++)  但是不推荐,因为sqrt很慢;
推荐 for(int i=2;i<=n/i;i++) //注意这儿是等于

分解质因数

试除法:从小到大列举我们的质因数
void divide(int n){
	for(int i=2;i<=n;i++)
		if(n%i==0){
			int s=0;
			while(n%i==0){
				n/=i;
				s++;
			}
			printf("%d %d\n",i,s);
		}
}
以上的过程看视就是把我们的每一个数列举出来而不是质因数,但是这儿有一点就是我们
当列举到i的时候,已经把我们的2---i所有的数已经列举了,所以i一定是质数;
举个例子 当i=6 的时候,能够满足if(n%i==0)条件的n数一定都被i=2,3 磨干净了
----------------------------------
那么我们参考上面找质数的方法进行优化呢?  参考性质  一个数最多含有一个大于qort(n)的质因数,证明用反证法;
所以:
void divide(int n){
	for(int i=2;i<=n/i;i++)
		if(n%i==0){
			int s=0;
			while(n%i==0){
				n/=i;
				s++;
			}
			printf("%d %d\n",i,s);
		}
	if(n>1) printf("%d %d\n",n,1); //我们将这个大于qort(n)的数放在了最后面来处理;
}

筛质数

朴素筛法:o(nlogn)

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n)
{
	for (int i = 2; i <= n; i ++ )000
	{
		if (!st[i]) primes[cnt ++ ] = i;
		for (int j = i + i; j <= n; j += i)  //为什么找一个数的倍数的标准做法
			st[j] = true;
	}
}
以上其实没有必要把每一个数的倍数都来筛一遍,我们只需要例举出质数的倍数就可以了

埃式筛法:o(nloglogn);

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n)
{
	for (int i = 2; i <= n; i ++ )
	{
		if (st[i]) continue;
		primes[cnt ++ ] = n; 
		for (int j = i + i; j <= n; j += i)
			st[j] = true;
	}
}

线性筛法:o(n)

该方法的目标就是不是找出一个i就把所有的i的倍数全部排除掉,而是每次只把最以primes[j]最小的质数的数非排除掉;

	int primes[N], cnt;     // primes[]存储所有素数
	bool st[N];         // st[x]存储x是否被筛掉
	void get_primes(int n)
	{
		for (int i = 2; i <= n; i ++ )
		{
			if (!st[i]) primes[cnt ++ ] = i; 
			for (int j = 0; primes[j] <= n / i; j ++ )
			//终止条件为 :当i为质数,那么一直到primes[j]==i:如果是合数,就是下面的break条件
			{
				st[primes[j] * i] = true;
				if (i % primes[j] == 0) break;// primes[j]一定是i的最小质因子  
			}
		}
	}
	首先明白在第二个循环当中,i一定是大于primes[j]的;
	1. 当i为质数的时候,i就是primes中最大的质数。那么当所以primes[j]肯定是primes[j]*i最小的质数。
		依次轮询就可以了。
	2. 当i为合数的时候,前期和上面一样慢慢的轮询,等到i%primes[j]==0 的时候就必须要break了,不然
		后面的primes[j] * i就是不正确的,因为 primes[j]*i 其实背后还有一个比primes[j]更小的质数。
		也就是说primes[j]并不是 primes[j]*i 最小的质数,
	3. 证明(我们假设i为合数,因为质数的时候很简单) :
	(1)当i%primes[j]!=0 的时候,由于我们prime是从从小往大取的,所以prime[j]一定是最小的质数(比i的最小质因数还小)
	primes[j]肯定是primes[j]*i最小的质数。
	(2)当i%primes[j]==0 的时候,prime[j]一定是i的最小质因数。所以也是primes[j]*i最小的质数。

约束

  1. 约数: 一个数的约数最多也就1500–1600 个

1)试除法求一个数的所有约数
	枚举两个约束中比较小的一个
	
	vector<int> get_divisors(int x)   O(sqrt(n));
	{
		vector<int> res;
		for (int i = 1; i <= x / i; i ++ )
			if (x % i == 0)
			{
				res.push_back(i);
				if (i != x / i) res.push_back(x / i);  //如刚好是平方智会重复存
			}
		sort(res.begin(), res.end());
		return res;
	}
2)约数的个数 
(3)约束的之和
	如果 N = p1^c1 * p2^c2 * ... *pk^ck
	约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
	约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

### 个数:

#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
    int n;
    cin >> n;

    unordered_map<int, int> primes;

    while (n -- )
    {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i ++ )
            while (x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }

        if (x > 1) primes[x] ++ ;
    }

    LL res = 1;
    for (auto p : primes) res = res * (p.second + 1) % mod;

    cout << res << endl;

    return 0;

-----------
### 求和:

    LL res = 1;
    for (auto p : primes)
    {
        LL a = p.first, b = p.second;
        LL t = 1;
        while (b -- ) t = (t * a + 1) % mod;
        res = res * t % mod;
    }
-----------

欧几里得算法 —求最大公约数—辗转相除法

定理:假设c为(a,b)的最大公约数 那么c也是(b,a%b)的最大公约束;

		因为a%b== a-(a/b)*b ==a-k*b;
	int gcd(int a, int b)
	{
		return b ? gcd(b, a % b) : a;
	}
-----------

欧拉函数

	1-n中和n互质数的个数 (互质:只有公约数1的两个数)  也就是最大公约数为1-----(c,m)=1;
	如果 N = p1^c1 * p2^c2 * ... *pk^ck
	我们去掉1-n中所有p1,p2,...pk的倍数
	-------------------------容斥原理----------------------------
	|那么有多少个呢?N-N/p1-N/p2-N/p3....N/pk;这里面有多去的部分|
	|加上所有pi*pj的倍数  +N/(Pi*pj)+...						|
	|减去所有pi*pj*pk的倍数 									|
	-------------------------------------------------------------
	那么互质的个数=N*(1-1/p1)*(1-1/p2)*.....(1-1/pk);  时间复杂度瓶颈在分解质因数上面
	
	---------------------------------------------------------------------------------
	int phi(int x)
	{
		int res = x;
		for (int i = 2; i <= x / i; i ++ )
			if (x % i == 0)
			{
				res = res / i * (i - 1);  //为什么不写成  res=res*(1-1/i) ??挺重要的,这样改写(避免产生小数)
				while (x % i == 0) x /= i;
			}
		if (x > 1) res = res / x * (x - 1);

		return res;
	}

筛法的欧拉函数:求的是每一个数的欧拉函数(利用了线性的筛法进行推导的)

	int primes[N], cnt;     // primes[]存储所有素数
	int euler[N];           // 存储每个数的欧拉函数
	bool st[N];         // st[x]存储x是否被筛掉
	void get_eulers(int n)
	{
		euler[1] = 1;
		for (int i = 2; i <= n; i ++ )
		{
			if (!st[i])
			{
				primes[cnt ++ ] = i;
				euler[i] = i - 1;   //当是一个质数的时候,欧拉就是i-1
			}
			for (int j = 0; primes[j] <= n / i; j ++ )
			{
				int t = primes[j] * i;
				st[t] = true;
				if (i % primes[j] == 0)
				{
					euler[t] = euler[i] * primes[j];//==0的时候
					break;
				}
				euler[t] = euler[i] * (primes[j] - 1);//!=0的时候
			}
		}
	}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值