对冲火焰CO添加对碳烟的影响

对冲扩散火焰中混合燃料的碳烟趋势简介:

有人在对冲火焰中添加CO和H2文章链接为:https://www.sciencedirect.com/science/article/pii/0010218095000436

为什么添加了其他燃料会影响碳烟的形成呢?主要是因为影响了燃料的浓度以及火焰的温度,此外还直接的影响了化学反应
上文作者添加了一组对照实验:利用氦气,惰性气体进行与H2添加实验进行对比。

为什么选择氦气和氢气添加做对比?

因为氦气和氢气很相似,尤其是扩散性质。

扩散系数是指气体的浓度梯度为一个单位时,单位面积通过的气体的质量称为扩散系数,此处氢气的扩散系数为273k下为:6.11氦气在317K 下为7.56。数据来自https://max.book118.com/html/2016/0705/47368741.sht

优先扩散效应在strained flame里是起很大作用的。所以才考虑扩散系数的影响,为了控制变量,应该使扩散系数差不多。此外为了检查H2的化学性质,因为氦气除了对燃烧没有任何贡献,只有稀释的作用,这样和氢气对比就可以知道H2对碳烟的形成到底是稀释还是化学效应。

碳烟的生成趋势

碳烟的形成趋势可以通过临界局部应变

临界局部应变这是个什么意思呢?就是说增哈strain rate也就是应变,然后看碳烟的生成?如何看呢?是看散射信号有没有,要是strain rate 增大到散射信号恰好消失那么此时的strain rate就是局部临界应变。显然临界局部应变反映了燃料产生碳烟能力的强弱。

来量化,当流场处于这个临界局部应变时,碳烟就恰好不会形成,从实验的角度就是散射型号消失了,因此如果应变的临界值高,那么碳烟的生成趋势就越强。

有实验表明

C2H4中添加CO导致碳烟下降,看下图,但是C3H8还有n-C4H8添加CO就有一个非单调的变化。
在这里插入图片描述
在C2H4中添加CO碳烟成核的应变率极限显然下降,所以碳烟的形成收到了抑制,这是因为CO的存在稀释了燃料。
而C3H8和n-C4H8添加CO就显示了先增后减的趋势。作者解释说是:CO+OH=CO 2+H这个反应导致的主要原因。因为H和OH对于碳烟的形成和氧化很重要,H原子对于碳烟的表面生长很重要,而OH对于碳烟的氧化很重要。
作者没有解释清楚CO的稀释作用,然后有一些人
进行了进一步的解释:

  1. CO的添加首先增加了火焰温度
  2. CO添加增加H原子的产生,从而增加了表面生长速率,
  3. CO的添加还降低了OH浓度,因此降低了碳烟的氧化,
  4. CO添加到C3H8和C4H10导致了成核的上升

CO对于燃料的热解有一定的影响,但是需要进一步研究。

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和二次开发,适用于各种复杂的研究和应用需求。
内容概要:BTS200轴承寿命预测测试台是一款专为研究轴承寿命预测及加速磨损过程设计的实验设备。该设备结构灵活,支持不同尺寸和类型的轴承测试,最大负载可达15000N。测试台采用先进的伺服电缸加载系统,能够在轴向和径向上精确施加载荷,并配备高精度测力传感器和温度监测系统,确保实验数据的准确性。此外,BTS200还拥有油液循环润滑系统,通过油膜减少摩擦和磨损,保持机械部件在适宜的工作温度范围内,延长轴承寿命。Bearing Prognostics Simulator(实验台可通过触控屏操作,支持多速运行(0-3000RPM),并具备过热保护机制,在温度超过150℃时自动停机。BTS200广泛应用于轴承寿命预测、故障机制研究以及剩余寿命预测模型的开发。 适合人群:轴承设计研发人员、机械工程研究人员、高校实验室师生及相关领域工程师。 使用场景及目标:①研究轴承在不同载荷和转速条件下的磨损特性;②开发和验证轴承剩余寿命预测模型;③探索轴承故障机制及其对系统性能的影响;④评估不同润滑方式对轴承寿命的影响。 其他说明:BTS200测试台不仅提供硬件支持,还配备了完整的软件控制系统,包括PLC闭环控制、温度监测反馈模块等,确保实验过程的稳定性和数据的可靠性。此外,设备支持快速安装和拆卸测试轴承,便于实验操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值