【动态规划】子数组的最大累加和问题

【动态规划】子数组的最大累加和问题

题目描述

给定一个数组arr,返回子数组的最大累加和
例如,arr = [1, -2, 3, 5, -2, 6, -1],所有子数组中,[3, 5, -2, 6]可以累加出最大的和12,所以返回12.
[要求]
时间复杂度为O(n)O(n),空间复杂度为O(1)O(1)

输入示例

[1, -2, 3, 5, -2, 6, -1]

输出示例

12

初始代码

import java.util.*;


public class Solution {
    /**
     * max sum of the subarray
     * @param arr int整型一维数组 the array
     * @return int整型
     */
    public int maxsumofSubarray (int[] arr) {
        // write code here
       
    }
}

解题思路

在这里插入图片描述
这是我第一次没有做本地调试尝试一次就成功了。
这道题时一个很经典的一维动态规划问题,我们只遍历一遍数组元素,我们可以把每一次访问的元素看成是以该元素结尾的最大子数组和,我们设定一个初始的最大子数组和nowArrayRes 为0,访问的元素值加上最大子数组和nowArrayRes的值A如果比当前元素值大,则更新nowArrayRes值为A,如果A比nowArrayRes小,则nowArrayRes更新为当前元素值。

状态转移方程:
d p [ i ] = d p [ i − 1 ] + a r r [ i ] 当 d p [ i − 1 ] + a r r [ i ] > a r r [ i ] 时 ; dp[i] = dp[i-1]+arr[i] 当dp[i-1]+arr[i] >arr[i]时; dp[i]=dp[i1]+arr[i]dp[i1]+arr[i]>arr[i]
d p [ i ] = a r r [ i ] 当 d p [ i − 1 ] + a r r [ i ] < = a r r [ i ] 时 ; dp[i] = arr[i] 当dp[i-1]+arr[i] <=arr[i]时; dp[i]=arr[i]dp[i1]+arr[i]<=arr[i]

解题代码

import java.util.*;


public class Solution {
    /**
     * max sum of the subarray
     * @param arr int整型一维数组 the array
     * @return int整型
     */
    public int maxsumofSubarray (int[] arr) {
        // write code here
        int nowArrayRes = 0;
        for(int elem : arr){
            if(elem+nowArrayRes > elem){
                nowArrayRes = elem+nowArrayRes;
            }else{
                nowArrayRes = elem;
            }
        }
        return nowArrayRes;
    }
}

札记

动态规划一定需要额外的存储空间来记录每个子问题的结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr. 良爷

您每一分的打赏都是对原创的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值