[leetcode] Path Sum III

本文深入探讨了PathSum III问题,这是一种在二叉树中寻找路径和等于特定目标值的算法挑战。通过使用递归和哈希映射优化解决方案,文章详细解释了如何有效地计算满足条件的路径数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Path Sum III

  • 问题描述:给定一颗二叉树,计算有多少条路径的sum等于一个target。路径的定义为从起点和终点之间依次都满足是后者是前者的孩子。如下图所示:
    在这里插入图片描述
  • 问题分析:
    • 针对每个节点,我们可以记录从跟节点到该节点所经历的所有value -> paths。
    • 然后我们计算该点和前面所有点的value和等于sum的个数。
    • 同样的我们递归计算该点的左孩子,右孩子。
    • 最终的结果等于cur + left + right
    • 是否可以优化?
      • 因为我们针对每个点,都要遍历一边paths,path 的长度取决于该点和root之间的距离。
      • 我们能否将value记忆起来?来免去这次遍历。
      • 我们知道最终的目标是找到一段路径的和为S。那么我们假设从跟节点到当前节点的和为X。则经过包含该点的路径的个数就等于从root遍历到目前这个点有多少和点对应的和为X-S。
      • 我们可以用map来记录这些值。map<key, value>, 表示从跟节点开始计算和为key的所有点的个数value。
      • 注意,在结束该点的遍历的时候,对应的map的记录也要减去1.
  • 代码
//
// Created by Liang on 2019-07-07.
//
#include <vector>
#include <iostream>
#include <queue>
#include <unordered_map>
using namespace std;
class Solution {
public:
    unordered_map<int, int> shown; // 判断路径上从root到某点的sum是否出现过
    int exisitSolution(vector<int> paths, int cur_ele, int sum){
        int res = 0;
        for(int i=paths.size()-1;i>=0;i--){
            cur_ele += paths[i];
            if(cur_ele == sum)
                res += 1;
        }
        return res;
    }
    int pathSumCore(TreeNode* root, int sum, vector<int> paths){
        // 必须包含paths里面的最后一个元素
        if(root == NULL)
            return 0;
        int cur = exisitSolution(paths, root->val, sum);
        if(root->val == sum){
            cur += 1;
        }
        paths.push_back(root->val);
        int left = pathSumCore(root->left, sum, paths);
        int right = pathSumCore(root->right, sum, paths);
        return left + right + cur;
    }
    int pathSumCoreV2(TreeNode* root, int sum, int pre_sum){
        if(root == NULL)
            return 0;
        pre_sum += root->val; // 包含当前节点从root到当前节点的sum
        int cur = shown[pre_sum - sum]; // 存在某种节点的个数,从根节点到该节点的和为pre_sum - sum, 则从当前节点到该节点的和就为sum
        shown[pre_sum] = shown[pre_sum] + 1; // 和为pre sum的节点个数加一
        int left = pathSumCoreV2(root->left, sum, pre_sum);
        int right = pathSumCoreV2(root->right, sum, pre_sum);
        shown[pre_sum] -= 1;    // 因为只能是单边的,所以这里需要减1
        return cur + left + right;
    }
    int pathSum(TreeNode* root, int sum) {
        shown[0] = 1;
        return pathSumCoreV2(root, sum, 0);
//        vector<int> paths;
//        if(root == NULL)
//            return 0;
//        paths.push_back(root->val);
//        int cur = (root->val == sum);
//        int left = pathSumCore(root->left, sum, paths);
//        int right = pathSumCore(root->right, sum, paths);
//        return left + right + cur;
    }
    static void solution(){
        Solution solution1;
        TreeNode* root = TreeNode::buildByLevel({1,0,1,1,2,0,-1,0,1,-1,0,-1,0,1,0}, -5);
        TreeNode::levelOrder(root);
        cout<<solution1.pathSum(root, 2)<<endl;
    }
};
### LeetCode Hot 100 路径总和 III Java 解决方案 #### 方法一:暴力递归法 此方法通过遍历每一个节点并尝试找到从该节点出发的所有可能路径,判断这些路径的和是否等于目标值。 ```java class Solution { int pathnumber; public int pathSum(TreeNode root, long sum) { if (root == null) return 0; Sum(root, sum); pathSum(root.left, sum); pathSum(root.right, sum); return pathnumber; } public void Sum(TreeNode root, long sum) { if (root == null) return; sum -= root.val; if (sum == 0) { pathnumber++; } Sum(root.left, sum); Sum(root.right, sum); } } ``` 这种方法虽然简单直观,但在处理大规模数据时效率较低。对于某些极端情况下的输入,可能会导致性能问题[^1]。 #### 方法二:优化后的前缀和加哈希表 为了提高算法效率,可以采用前缀和的概念加上哈希表来记录已经访问过的节点及其累积值。这样可以在一次深度优先搜索过程中完成计算,而不需要重复遍历子树。 ```java import java.util.HashMap; public class Solution { private HashMap<Long, Integer> prefixSumCount = new HashMap<>(); public int pathSum(TreeNode root, int targetSum) { prefixSumCount.put(0L, 1); return findPath(root, 0L, targetSum); } private int findPath(TreeNode node, long currentSum, int targetSum) { if (node == null) return 0; // 更新当前累计和 currentSum += node.val; // 计算满足条件的数量 int numPathsToCurrentNode = prefixSumCount.getOrDefault(currentSum - targetSum, 0); // 将当前累计和加入map中 prefixSumCount.put(currentSum, prefixSumCount.getOrDefault(currentSum, 0) + 1); // 继续向下探索左右子树 int leftResult = findPath(node.left, currentSum, targetSum); int rightResult = findPath(node.right, currentSum, targetSum); // 移除当前结点的影响以便回溯到父级调用者处继续其他分支的查找工作 prefixSumCount.put(currentSum, prefixSumCount.get(currentSum) - 1); return numPathsToCurrentNode + leftResult + rightResult; } } ``` 这种改进的方法不仅提高了时间复杂度至 O(n),而且空间上也更加高效,适用于更广泛的情况[^2]。 #### 数据约束说明 题目规定了二叉树中的节点数量范围以及各节点取值区间: - 二叉树的节点个数的范围是 [0,1000] - `-10^9 <= Node.val <= 10^9` - `-1000 <= targetSum <= 1000` 因此,在实现解决方案时需要注意数值类型的选取以防止溢出等问题的发生[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值