对CSV文件和XML文件的处理

1.重新格式化数据并写入到CSV文件中

#!/usr/bin/python3
#coding:utf-8
#重新格式化数据(日期)并写入到CSV文件
import csv
from datetime import datetime

def convertDate(item):
    theDate = item[-1]          #从记录中提取日期域
    dateObj = datetime.strptime(theDate,'%Y-%m-%d') #解析(parse)日期域  
    dateStr = datetime.strftime(dateObj,'%m/%d/%Y') #格式化(format)日期对象
    item[-1] = dateStr
    return item

if __name__ == '__main__':
    with open('ToolhireData/tooldesc.csv') as td: #打开原始CSV文件
       rdr =  csv.reader(td)
       items = list(rdr)        #读取记录并保存在items的列表

    items = [convertDate(item) for item in items]
    with open("./ToolhireData/tooldesc2.csv",'w',newline = '') as td:
        wrt = csv.writer(td)
        for item in items:
            wrt.writerow(item)
2.添加标题行(键值)到CSV文件中

#!/usr/bin/python3
#coding:utf-8

#将标题行(键值)添加到CSV文件
#DicReader 返回字典dict  而reader 返回列表list

import csv

fields = ['ItemID','Name','Description','Owner',
        'Price','Condition','DateRegistered']

with open('ToolhireData/tooldesc2.csv') as td_in:
    rdr = csv.DictReader(td_in,fieldnames = fields) #初始化fieldnames 
    items = [item for item in rdr]

with open('ToolhireData/tooldesc3.csv','w',newline = '') as td_out:
    wrt = csv.DictWriter(td_out,fieldnames = fields)#通过fieldnames指定了域的顺序(字典保存的域是无序的)
    wrt.writeheader()
    wrt.writerows(items)        #将整个items列表一次写出

3.使用ElementTree 解析 XML

#!/usr/bin/python3
#coding:utf-8
#使用ElementTree 解析 XML 文件
#提取日期并计算书本的平均借出时间
import xml.etree.ElementTree as ET #导入ElementTree解析器
import datetime as dt

def parseDates(filename):
    dates = []
    rows  = []
    dom   = ET.parse(filename)     #文件解析
    #root  = dom.getroot()         #得到文件根结点
    for node in dom.iter('*'):     #查找文件中所有内容 ‘*’通配符
        if 'Row' in node.tag:
            rows.append(node)      #结点列表
    #检查结点列表中的每一行#
    for row in rows:
        row_dates = []
        for node in row.iter('*'):
            for key,value in node.attrib.items():   #检查特性key为‘Type’,value为'DateTime'的行
                if 'Type' in key and 'DateTime' in value:
                    row_dates.append(node.text)
        if len(row_dates) == 2:                     #如果row_dates列表包含两个日期(借书日期,还书日期),则添加到dates列表
            dates += row_dates    
    return dates

def calculateAverage(dates):
    loan_periods = []
    while dates:
        lent = dates.pop(0).split('T')[0]
        ret  = dates.pop(0).split('T')[0]
        lent_date = dt.datetime.strptime(lent,'%Y-%m-%d')
        ret_date  = dt.datetime.strptime(ret,'%Y-%m-%d')
        loan_periods.append( (ret_date - lent_date).days )
    average = sum(loan_periods)/len(loan_periods)
    return average

if __name__ == '__main__':
    dates = parseDates('toolhire.xml')
    avg   = calculateAverage(dates)
    print('Average loan period is: {} days'.format(avg))


注:测试目录和文件已上传



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值