【洛谷 1072 && 蓝桥杯 算法训练 ALGO - 37】Hankson 的趣味题


题目链接: http://lx.lanqiao.cn/problem.page?gpid=T99

1 题目

题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0, a1, b0, b1,设某未知正整数 x 满足:

    1. x 和 a0 的最大公约数是 a1;
    1. x 和 b0 的最小公倍数是 b1;

Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的 x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

输入格式

输入第一行为一个正整数 n,表示有 n 组输入数据。
接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。

输出格式

输出共 n 行。每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x ,请输出 0 ; 若存在这样的 x ,请输出满足条件的 x 的个数;

样例输入

2
41 1 96 288
95 1 37 1776

样例输出

6
2

样例说明

第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。
第二组输入数据,x 可以是 48、1776,共有 2 个。

2 分析

首先,直接暴力枚举只能过 50 % 50\% 50% 的数据。

1. 关于两个定理:

  • 最大公约数

    int gcd(int a, int b){   
        return b == 0 ? a : gcd(b, a % b);     
    }
    
  • 最小公倍数

    int lcm(int a, int b){
        return a * b / gcd(a, b);
    }
    

2. 一个结论:设 g c d ( x , a 0 ) = a 1 gcd(x, a_0)=a_1 gcd(x,a0)=a1 ,并有
{ x = k 1 ∗ a 1 a 0 = k 2 ∗ a 1 \left\{ \begin{aligned} x=k_{1}*a_{1} \\ a_{0}=k_{2}*a_{1}& \end{aligned} \right. {x=k1a1a0=k2a1

g c d ( k 1 , k 2 ) = 1 gcd(k_1,k_2)=1 gcd(k1,k2)=1

证明:

  • 假设 g c d ( k 1 , k 2 ) ≠ 1 gcd(k_1,k_2)\neq1 gcd(k1,k2)=1 g c d ( k 1 , k 2 ) = K gcd(k_1,k_2)=K gcd(k1,k2)=K,并有
    { k 1 = p ∗ K k 2 = q ∗ K \left\{ \begin{aligned} k_{1}=p*K \\ k_{2}=q*K& \end{aligned} \right. {k1=pKk2=qK

  • 由假设得:
    { x = p ∗ K ∗ a 1 a 0 = q ∗ K ∗ a 1 \left\{ \begin{aligned} x=p*K*a_{1} \\ a_{0}=q*K*a_{1}& \end{aligned} \right. {x=pKa1a0=qKa1

  • 可得 g c d ( x , a 0 ) = K ∗ a 1 ≠ a 1 gcd(x,a_0)=K*a_1\neq a_1 gcd(x,a0)=Ka1=a1,结果与题目条件不符,假设不成立

  • g c d ( k 1 , k 2 ) = 1 gcd(k_1,k_2)=1 gcd(k1,k2)=1

因此可得:

对于两个正整数 a , b a,b a,b ,设 g c d ( a , b ) = k gcd(a,b)=k gcd(a,b)=k 则存在 g c d ( a / k , b / k ) = 1 gcd(a / k,b / k)=1 gcd(a/k,b/k)=1

3. 推导

  • 由最大公约数定理
    g c d ( x , a 0 ) = a 1 gcd(x,a_{0})=a_{1} gcd(x,a0)=a1


    g c d ( x a 1 , a 0 a 1 ) = 1 gcd(\frac {x} {a_{1}} ,\frac {a_{0}}{a_{1}})=1 gcd(a1x,a1a0)=1

  • 由最小公倍数定理
    l c m ( x , b 0 ) = b 1 = x ∗ b 0 g c d ( x , b 0 ) lcm(x,b_{0})=b_{1}=\frac {x*b_{0}}{gcd(x,b_{0})} lcm(x,b0)=b1=gcd(x,b0)xb0


    g c d ( x , b 0 ) = x ∗ b 0 b 1 gcd(x,b_{0})=\frac{x*b_{0}}{b_{1}} gcd(x,b0)=b1xb0


    g c d ( b 1 b 0 , b 1 x ) = 1 gcd(\frac {b_1} {b_{0}} ,\frac {b_{1}}{x})=1 gcd(b0b1,xb1)=1

4. 最终可得如下结论:
{ g c d ( x a 1 , a 0 a 1 ) = 1 g c d ( b 1 b 0 , b 1 x ) = 1 \left\{ \begin{aligned} gcd(\frac {x} {a_{1}} ,\frac {a_{0}}{a_{1}})=1 \\ gcd(\frac {b_1} {b_{0}} ,\frac {b_{1}}{x})=1& \end{aligned} \right. gcd(a1x,a1a0)=1gcd(b0b1,xb1)=1

3 题解

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

int gcd(int a, int b){
	return b == 0 ? a : gcd(b, a % b);
}

int main(){
	int n;
	cin >> n;
	while(n--){
		int a0, a1, b0, b1, ans = 0;
		cin >> a0 >> a1 >> b0 >> b1;
		for(int x = 1;x <= sqrt(b1);x++){
			if(b1 % x == 0){
				if(x % a1 == 0 && gcd(x / a1, a0 / a1) == 1 && gcd(b1 / x, b1 / b0) == 1){
					ans++;
				}
				//枚举另一个因子 
				int y = b1 / x;
				if(y == x){
					continue;
				}
				if(y % a1 == 0 && gcd(y / a1, a0 / a1) == 1 && gcd(b1 / y, b1 / b0) == 1){
					ans++;
				}
			}
		}
		if(ans != 0){
			printf("%d\n", ans);
		}else{
			printf("0\n");
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值