1.算法步骤:
- 选择两个质数 p , q p,q p,q
- 计算 N = p ∗ q , ϕ ( N ) = ( p − 1 ) ∗ ( q − 1 ) N=p*q,\phi(N)=(p-1)*(q-1) N=p∗q,ϕ(N)=(p−1)∗(q−1)
- 选择一个与小于 N N N的与 N N N互质的数 e e e,并且求出 e e e在模 ϕ ( N ) \phi(N) ϕ(N)意义下的乘法逆元 x x x
- e作为公钥,x作为私钥
- 加密就是 A e % N = M A^e \% N=M Ae%N=M
- 解密就是 M x % N = A M^x\%N=A Mx%N=A
2.算法证明:
M
=
A
e
M=A^e
M=Ae
M
x
=
(
A
e
)
x
M^x=(A^e)^x
Mx=(Ae)x
e
∗
x
≡
1
(
m
o
d
ϕ
(
N
)
)
e*x\equiv1(mod \phi(N))
e∗x≡1(modϕ(N))
A
e
x
≡
A
A^{ex}\equiv A
Aex≡A