区间乘区间欧拉函数和(线段树,欧拉函数性质)

1.维护一个序列,支持两个操作:
(1)0 l r w [ l , r ] [l,r] [l,r]区间乘w
(2)1 l r 询问 [ l , r ] [l,r] [l,r]区间欧拉函数和
2.思路:考虑欧拉函数的性质:
如 果 p 是 质 数 , p ∣ n 且 p ∣ n 2 , 则 φ ( n ) = φ ( n / p ) ∗ p 如果p是质数,p|n且p|n^2,则\varphi(n)=\varphi(n/p)*p ppnpn2φ(n)=φ(n/p)p
如 果 p 是 质 数 , p ∣ n 且 p ∤ n 2 , 则 φ ( n ) = φ ( n / p ) ∗ ( p − 1 ) 如果p是质数,p|n且p\nmid n^2,则\varphi(n)=\varphi(n/p)*(p-1) ppnpn2φ(n)=φ(n/p)(p1)
我们考虑对要乘的w分解质因数,如果对于p,区间符合第一条(就是出现过这个质因子)就直接按正常线段树搞,如果不符合(没出现过质因子p)就递归到叶子节点改,最后在push_up上来。可以看到,递归到子节点的操作是有限的。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll N=800010,mod=998244353;
ll sum[N],tag[N][30],mlaz[N];
ll primes[N],cnt;
bool st[N];
void get_primes(ll n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])primes[cnt++]=i;
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0) break;
        }
    }
}
void pushup(ll rt)
{
	sum[rt]=(sum[rt<<1]+sum[rt<<1|1])%mod;
	for(int i=0;i<cnt;i++)
	{
		if(tag[rt<<1][i]&&tag[rt<<1|1][i]) tag[rt][i]=1;
		else tag[rt][i]=0;
	}
}
void pushdown(ll rt)
{
	if(mlaz[rt]!=1)
	{
		sum[rt<<1]=(sum[rt<<1]*mlaz[rt])%mod;
		sum[rt<<1|1]=(sum[rt<<1|1]*mlaz[rt])%mod;
		mlaz[rt<<1]=(mlaz[rt<<1]*mlaz[rt])%mod;
		mlaz[rt<<1|1]=(mlaz[rt<<1|1]*mlaz[rt])%mod;
		mlaz[rt]=1;
	}
}

void build(ll l,ll r,ll rt)
{
	mlaz[rt]=1;
	for(int i=0;i<cnt;i++) tag[rt][i]=0;
	if(l==r)
	{
		ll x;
		scanf("%lld",&x);
		int res=x;
		for(int i=0;i<cnt;i++)
		{
			ll y=primes[i];
			if (x%y==0)
			{
				tag[rt][i]=1;
				res=res/y*(y-1);
			}
		}
		sum[rt]=res;
		return ;
	}
	
	ll m=(l+r)>>1; 
	build(l,m,rt<<1);
	build(m+1,r,rt<<1|1);
	
	pushup(rt);
}

void update(ll L,ll R,ll c,ll l,ll r,ll rt)
{
	if(L<=l&&r<=R)
	{
		if(tag[rt][c]==1)
		{
			mlaz[rt]=(mlaz[rt]*primes[c])%mod;
			sum[rt]=(sum[rt]*primes[c])%mod;
		}
		else
		{
			tag[rt][c]=1;
			if(l==r)
			{
				sum[rt]=(sum[rt]*(primes[c]-1))%mod;
				return ;
			}
			pushdown(rt);
			
			ll m=(l+r) >> 1;
			if(L<=m) update(L,R,c,l,m,rt << 1);
			if(m<R)  update(L,R,c,m+1,r,rt<<1|1);
			
			pushup(rt);
		}
		return ;
	}
	pushdown(rt);
	
	ll m=(l+r) >> 1;
	if(L<=m) update(L,R,c,l,m,rt << 1);
	if(m<R)  update(L,R,c,m+1,r,rt << 1|1);
	
	pushup(rt);
}

ll query(ll L,ll R,ll l,ll r,ll rt)
{
	if(L<=l&&r<=R)
	{
		return sum[rt]%mod;
	}
	pushdown(rt);
	
	ll m=(l+r) >> 1;
	ll ret=0;
	if(L <= m)
	{
		ret+=query(L,R,l,m,rt<<1);
		ret%=mod;
	}
	if(m < R)
	{
		ret+=query(L,R,m+1,r,rt<<1|1);
		ret%=mod;
	}
	return ret%mod; 
}

int main()
{
	get_primes(100);
	ll n,q;
	scanf("%lld%lld",&n,&q);
	build(1,n,1);
	while(q--)
	{
		ll op;
		scanf("%lld",&op);
		if(op==0)
		{
			ll a,b,w;
			scanf("%lld%lld%lld",&a,&b,&w);
			for(int i=0;i<cnt;i++)
			{
				ll y=primes[i];
				while(w%y==0)
				{
					update(a,b,i,1,n,1);
					w/=y;
				}
			}
		}
		else if(op==1)
		{
			ll a,b;
			scanf("%lld%lld",&a,&b);
			printf("%lld\n",query(a,b,1,n,1)%mod);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值