算法课作业:8.3题

题目:

吝啬 SAT 问题是这样的: 给定一组子句(每个子句都是文字的析取)和整数K,求一个最多有K个变量为true的满足赋值---------------如果该赋值存在。证明吝啬SAT问题是NPC问题


答案:

首先,容易得出吝啬SAT问题的解是可以在多项式时间内验证的,因此属于NP问题。另外因为可以将SAT问题规约到吝啬SAT问题(只要将K设为变量种个数即可),因此吝啬SAT问题 为NPC问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值