机器学习实战
liangyingyi1006
这个作者很懒,什么都没留下…
展开
-
2.Iris数据集:感知器模型的简单实战(分类)
1原创 2017-07-21 11:16:07 · 6514 阅读 · 2 评论 -
机器学习实战之线性回归+局部加权线性回归
一、线性回归 用线性回归找到最佳拟合直线回归的目的是预测数值型数据,根据输入写出一个目标值的计算公式,这个公式就是回归方程(regression equation),变量前的系数(比如一元一次方程)称为回归系数(regression weights)。求这些回归系数的过程就是回归。假设输入数据存放在矩阵X中,回归系数存放在向量w中,那么对于数据X1的预测结果可以用Y1=XT1w原创 2017-07-13 14:40:05 · 1339 阅读 · 1 评论 -
实战:航空公司客户价值分析
一、 背景与挖掘目标试图实现以下目标:(1)借助航空公司数据,对客户进行分类。(2)对不同类别的客户进行特征分析,比较不同类别客户的价值分析。(3)对不同价值的客户类别进行个性化服务,制定相应的营销策略。二、分析方法使用 LRMFC模型来进行分析L:三、数据探索1、对比describe()函数(1)(2)原创 2017-07-04 10:58:32 · 8724 阅读 · 0 评论 -
《Python数据分析与挖掘实战》逻辑回归建立
一、逻辑回归模型建立结果展示:原创 2017-06-22 16:16:49 · 521 阅读 · 0 评论 -
感知器实战
一、定义感知器接口方法:通过使用面向对象编程的方式在一个Python类里定义感知器接口,使得我们可以初始化新的感知器对象,并使用类中定义的fit方法从数据中进行学习,用predict方法进行预测。import numpy as npclass Perceptron(object): def _init_(self,eta=0.01,n_iter=10): self原创 2017-08-11 15:11:55 · 542 阅读 · 0 评论 -
基于LSTM对时间序列进行预测
本文的案例来自https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/注:以下内容在该案例中进行了删改。我们要在这篇文章中看到的问题是国际航空乘客预测问题。这是一个问题,在一年一个月的时间里,任务是预测1000个国际航空公司的乘客数量。数据范围从194...翻译 2018-02-10 10:04:39 · 50653 阅读 · 3 评论 -
电商商品评论主题分析(LDA)
下面代码的意思是从评论数据中抽取品牌是美的的数据(15-1)#-*- coding: utf-8 -*- import pandas as pd inputfile = '../data/huizong.csv' #评论汇总文件 outputfile = '../data/meidi_jd.txt' #评论提取后保存路径 data = pd.read_csv(inputfil...转载 2018-02-21 11:09:06 · 3384 阅读 · 2 评论 -
python进行情感分析
一、数据获取在天猫爬取斯凯奇品牌下的男鞋店铺共5或6个,除去重复评论后,共条,放在Excel文件。二、文本预处理import pandas as pdimport numpy as npimport jiebaimport warningswarnings.filterwarnings(action='ignore', category=UserWarning, module='gen...原创 2018-02-10 09:57:07 · 5239 阅读 · 0 评论