Author has gone out of the stories about Vasiliy, so here is just a formal task description.
You are given q queries and a multiset A, initially containing only integer 0. There are three types of queries:
- "+ x" — add integer x to multiset A.
- "- x" — erase one occurrence of integer x from multiset A. It's guaranteed that at least one x is present in the multiset A before this query.
- "? x" — you are given integer x and need to compute the value , i.e. the maximum value of bitwise exclusive OR (also know as XOR) of integer x and some integer y from the multiset A.
Multiset is a set, where equal elements are allowed.
The first line of the input contains a single integer q (1 ≤ q ≤ 200 000) — the number of queries Vasiliy has to perform.
Each of the following q lines of the input contains one of three characters '+', '-' or '?' and an integer xi (1 ≤ xi ≤ 109). It's guaranteed that there is at least one query of the third type.
Note, that the integer 0 will always be present in the set A.
For each query of the type '?' print one integer — the maximum value of bitwise exclusive OR (XOR) of integer xi and some integer from the multiset A.
10 + 8 + 9 + 11 + 6 + 1 ? 3 - 8 ? 3 ? 8 ? 11
11 10 14 13
After first five operations multiset A contains integers 0, 8, 9, 11, 6 and 1.
The answer for the sixth query is integer — maximum among integers , , , and .
题解:看到有人用multiset新姿势的,我也要学一下,先记录一下。
代码:
#pragma comment(linker, "/STACK:102400000,102400000")
//#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cmath>
#include<queue>
#include<set>
#include <utility>
#include<stack>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define mst(a) memset(a, 0, sizeof(a))
#define M_P(x,y) make_pair(x,y)
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
const int lowbit(int x) { return x&-x; }
const double eps = 1e-8;
const int INF = 1e9+7;
const ll inf =(1LL<<62) ;
const int MOD = 1e9 + 7;
const ll mod = (1LL<<32);
const int N = 101010;
template <class T1, class T2>inline void getmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void getmin(T1 &a, T2 b) { if (b<a)a = b; }
int read()
{
int v = 0, f = 1;
char c =getchar();
while( c < 48 || 57 < c ){
if(c=='-') f = -1;
c = getchar();
}
while(48 <= c && c <= 57)
v = v*10+c-48, c = getchar();
return v*f;
}
multiset<int> ms;
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int q;
q=read();
ms.insert(0);
while (q--)
{
char cmd;
int x;
scanf(" %c %d", &cmd, &x);
if (cmd == '+')
ms.insert(x);
else if (cmd == '-')
ms.erase(ms.find(x));
else
{
int ans = 0;
for (int i = 29; i >= 0; --i)
{
ans |= (~x & (1 << i));
auto it = ms.lower_bound(ans);
if (it == ms.end() || *it >= ans + (1 << i))
ans ^= 1 << i;
}
printf("%d\n", ans ^ x);
}
}
return 0;
}