LCA与RMQ问题

1、 定义

LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先)。

 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,本文介绍了当前解决这两种问题的比较高效的算法。


再来个浅显的说法:对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。另一种理解方式是把T理解为一个无向无环图,而LCA(T,u,v)即u到v的最短路上深度最小的点。(这样应该懂了吧)
再给出一个LCA的例子:
对于T=
V={1,2,3,4,5}
E={(1,2),(1,3),(3,4),(3,5)}
则有:
LCA(T,5,2)=1
LCA(T,3,4)=3
LCA(T,4,5)=3


2、 RMQ算法

RMQ问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小值下标。下面是一个RMQ问题的例子:
对于数列:5,8,1,3,6,4,9,5,7 有:
RMQ(2,4)=3
RMQ(6,9)=6
其实RMQ问题与LCA问题的关系紧密,可以相互转换,相应的求解算法也有异曲同工之妙。(嘿嘿。。。想想再往下看)
下面给出LCA问题向RMQ问题的转化方法。
对树进行深度优先遍历,每当遍历或回溯到某个结点时,将这个结点的深度存入数组E最后一位。同时记录结点i在数组中第一次出现的位置(事实上就是进入结点i时记录的位置),记做R[i]。

如果结点E[i]的深度记做D[i],易见,这时求LCA(T,u,v),就等价于求 E[RMQ(D,R[u],R[v])]。
如果数列E[i]为:1,2,1,3,4,3,5,3,1
R[i]为:1,2,4,5,7
D[i]为:0,1,0,1,2,1,2,1,0
于是有:
LCA(T,5,2) = E[RMQ(D,R[2],R[5])] = E[RMQ(D,2,7)] = E[3] = 1
LCA(T,3,4) = E[RMQ(D,R[3],R[4])] = E[RMQ(D,4,5)] = E[4] = 3
LCA(T,4,5) = E[RMQ(D,R[4],R[5])] = E[RMQ(D,5,7)] = E[6] = 3
易知,转化后得到的数列长度为树的结点数的两倍加一,所以转化后的RMQ问题与LCA问题的同规模。


对于该RMQ问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法也许会存在问题。

下面介绍了一种比较高效的在线算法(ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。


首先是预处理O(nlogn),用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。


ST表看我这里:点我打开链接

同样,这样的问题也可以用线段树解决,算法复杂度为:O(N)~O(logN)。

但ST表可以O(nlogn)预处理,O(1)查询。


3、 LCA算法
对于该问题,最容易想到的算法是分别从节点u和v回溯到根节点,获取u和v到根节点的路径P1,P2,其中P1和P2可以看成两条单链表,这就转换成常见的一道面试题:【判断两个单链表是否相交,如果相交,给出相交的第一个点。】。该算法总的复杂度是O(n)(其中n是树节点个数)。


下面介绍了两种比较高效的算法解决这个问题,其中一个是在线算法(DFS+ST),另一个是离线算法(Tarjan算法)。


在线算法DFS+ST描述(思想是:将树看成一个无向图,u和v的公共祖先一定在u与v之间的最短路径上):
(1)DFS:从树T的根开始,进行深度优先遍历(将树T看成一个无向图),并记录下每次到达的顶点。第一个的结点是root(T),每经过一条边都记录它的端点。由于每条边恰好经过2次,因此一共记录了2n-1个结点,用E[1, ... , 2n-1]来表示。
(2)计算R:用R[i]表示E数组中第一个值为i的元素下标,即如果R[u] < R[v]时,DFS访问的顺序是E[R[u], R[u]+1, …, R[v]]。虽然其中包含u的后代,但深度最小的还是u与v的公共祖先。
(3)RMQ:当R[u] ≥ R[v]时,LCA[T, u, v] = RMQ(L, R[v], R[u]);否则LCA[T, u, v] = RMQ(L, R[u], R[v]),计算RMQ。
由于RMQ中使用的ST算法是在线算法,所以这个算法也是在线算法。

【举例说明】
T=<V,E>,其中V={A,B,C,D,E,F,G},E={AB,AC,BD,BE,EF,EG},且A为树根。则图T的DFS结果为:A->B->D->B->E->F->E->G->E->B->A->C->A,要求D和G的最近公共祖先, 则LCA[T, D, G] = RMQ(L, R[D], R[G])= RMQ(L, 3, 8),L中第4到7个元素的深度分别为:1,2,3,3,则深度最小的是B。


离线算法(Tarjan算法)描述:
所谓离线算法,是指首先读入所有的询问(求一次LCA叫做一次询问),然后重新组织查询处理顺序以便得到更高效的处理方法。Tarjan算法是一个常见的用于解决LCA问题的离线算法,它结合了深度优先遍历和并查集,整个算法为线性处理时间。


Tarjan算法是基于并查集的,利用并查集优越的时空复杂度,可以实现LCA问题的O(n+Q)算法,这里Q表示询问 的次数。

同上一个算法一样,Tarjan算法也要用到深度优先搜索。

算法大体流程如下:对于新搜索到的一个结点,首先创建由这个结点构成的集合,再对当前结点的每一个子树进行搜索,每搜索完一棵子树,则可确定子树内的LCA询问都已解决。其他的LCA询问的结果必然在这个子树之外,这时把子树所形成的集合与当前结点的集合合并,并将当前结点设为这个集合的祖先。之后继续搜索下一棵子树,直到当前结点的所有子树搜索完。这时把当前结点也设为已被检查过的,同时可以处理有关当前结点的LCA询问,如果有一个从当前结点到结点v的询问,且v已被检查过,则由于进行的是深度优先搜索,当前结点与v的最近公共祖先一定还没有被检查,而这个最近公共祖先的包涵v的子树一定已经搜索过了,那么这个最近公共祖先一定是v所在集合的祖先。

例子:


根据实现算法可以看出,只有当某一棵子树全部遍历处理完成后,才将该子树的根节点标记为黑色(初始化是白色),假设程序按上面的树形结构进行遍历,首先从节点1开始,然后递归处理根为2的子树,当子树2处理完毕后,节点2, 5, 6均为黑色;接着要回溯处理3子树,首先被染黑的是节点7(因为节点7作为叶子不用深搜,直接处理),接着节点7就会查看所有询问(7, x)的节点对,假如存在(7, 5),因为节点5已经被染黑,所以就可以断定(7, 5)的最近公共祖先就是find(5).ancestor,即节点1(因为2子树处理完毕后,子树2和节点1进行了union,find(5)返回了合并后的树的根1,此时树根的ancestor的值就是1)。有人会问如果没有(7, 5),而是有(5, 7)询问对怎么处理呢? 我们可以在程序初始化的时候做个技巧,将询问对(a, b)和(b, a)全部存储,这样就能保证完整性。


4、 总结
LCA和RMQ问题是两个非常基本的问题,很多复杂的问题都可以转化这两个问题解决,这两个问题在ACM编程竞赛中遇到的尤其多。这两个问题的解决方法中用到很多非常基本的数据结构和算法,包括并查集,深度优先遍历,动态规划等。

接下来我再总结一下LCA的在线算法和离线算法。(点击打开链接

此博文总结部分来自董的博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值