题目链接:点击打开链接
Another Tree | ||||||
| ||||||
Description | ||||||
给出一棵有N个节点(2 <= N <= 500000)和N-1条边的树,每条边拥有一个长度L(1 <= L <= 500000)。 定义: (1) path(u, v) = 顶点u和v之间的最短路。 (2) xor-distance(u, v) = ⊕e∈path(u,v)length(e),⊕代表异或操作。 请计算出有多少对点的xor-distance的值等于K(0 <= K <= 500000)。(v != u 并且 pair(u,v) = pair(v,u))。 | ||||||
Input | ||||||
第一行是一个整数T,表示有T组测试数据。 接下来T组测试数据,每组测试数据开始为两个正整数N,K,接下来N-1行每行包含三个整数u,v,L(0 <= u,v <= N-1),代表树中存在一条顶点为u,v,边长为L的边。 | ||||||
Output | ||||||
每组一行,输出点对的个数。 | ||||||
Sample Input | ||||||
2 4 1 0 1 1 1 2 3 2 3 2 3 0 0 1 7 0 2 7
| ||||||
Sample Output | ||||||
2 1
| ||||||
Source | ||||||
2016级新生程序设计全国邀请赛 |
题解:就是给你n个数字,问有多少对数字异或后等于k,在树上BFS去找到这些数字,然后统计找到的数字数字和K值出现的次数,将他们加到答案中, 最后除以2就是对数了。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define N 500005
struct Node
{
int to,w;
Node(int _to,int _w):to(_to),w(_w){}
};
/*
struct Node
{
int to,w;
Node(int to,int w)
{
this->to = to;
this->w = w;
}
};
*/
vector<Node> v[N];
queue<int> q;
map<int,long long> K_num;
int vis[N],dis[N];
void bfs(int s)
{
while(!q.empty()) q.pop();
q.push(s);
vis[s] = 1;
dis[s] = 0;
while(!q.empty())
{
int now = q.front();
//printf("%d\n",now);
q.pop();
K_num[dis[now]]++;
//printf("tot[%d]=%d\n",dis[now],tot[dis[now]]);
int len = v[now].size(); //当前节点now的大小
for(int i = 0; i < len; i++)
{
int next = v[now][i].to;
int next_w = v[now][i].w;
//printf("next=%d next_w=%d\n",next,next_w);
if(vis[next]==0)
{
vis[next] = 1;
dis[next] = dis[now]^next_w;
//printf("dis[%d]=%d\n",next,dis[next]);
q.push(next);
}
}
}
}
int main()
{
int t,n,k,x,y,w;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
for(int i = 0; i < n; i++) v[i].clear();
for(int i = 1; i < n; i++)
{
scanf("%d%d%d",&x,&y,&w);
v[x].push_back(Node(y,w));
v[y].push_back(Node(x,w));
}
K_num.clear();
memset(vis,0,sizeof(vis));
// puts("**************");
bfs(0);
//puts("**************");
long long ans = 0;
for(int i = 0; i < n; i++)
{
//printf("dis[%d]=%d\n",i,dis[i]);
if(k==0) ans += K_num[ k^dis[i] ]/2;
else ans += K_num[ k^dis[i] ];
}
ans = ans/2;
printf("%lld\n",ans);
}
return 0;
}
/*
2
4 1
0 1 1
1 2 3
2 3 2
3 0
0 1 7
0 2 7
*/
/*
2
1
*/