算法提高 道路和航路 (SPFA的SLF优化)

问题描述

农夫约翰正在针对一个新区域的牛奶配送合同进行研究。他打算分发牛奶到T个城镇(标号为1..T),这些城镇通过R条标号为(1..R)的道路和P条标号为(1..P)的航路相连。

每一条公路i或者航路i表示成连接城镇Ai(1<=A_i<=T)和Bi(1<=Bi<=T)代价为Ci。每一条公路,Ci的范围为0<=Ci<=10,000;由于奇怪的运营策略,每一条航路的Ci可能为负的,也就是-10,000<=Ci<=10,000。

每一条公路都是双向的,正向和反向的花费是一样的,都是非负的。

每一条航路都根据输入的Ai和Bi进行从Ai->Bi的单向通行。实际上,如果现在有一条航路是从Ai到Bi的话,那么意味着肯定没有通行方案从Bi回到Ai

农夫约翰想把他那优良的牛奶从配送中心送到各个城镇,当然希望代价越小越好,你可以帮助他嘛?配送中心位于城镇S中(1<=S<=T)。

输入格式

输入的第一行包含四个用空格隔开的整数T,R,P,S。

接下来R行,描述公路信息,每行包含三个整数,分别表示Ai,Bi和Ci

接下来P行,描述航路信息,每行包含三个整数,分别表示Ai,Bi和Ci

输出格式
输出T行,分别表示从城镇S到每个城市的最小花费,如果到不了的话输出NO PATH。
样例输入
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
样例输出
NO PATH
NO PATH
5
0
-95
-100
数据规模与约定

对于20%的数据,T<=100,R<=500,P<=500;

对于30%的数据,R<=1000,R<=10000,P<=3000;

对于100%的数据,1<=T<=25000,1<=R<=50000,1<=P<=50000。


题解:这题其实就是把无向图和有向图搞在一起的最短路。这道题数据太大,朴素的SPFA(O(kE ))肯定会卡。

所以我们要用SPFA的SLF优化或者LLL优化。还有读入挂。

原题:点击打开链接(codevs 2273)

代码:

#include<bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<deque>
#define MAX 150100
#define INF 1000000000

using namespace std ;
int read()
{
	int v = 0, f = 1;
	char c =getchar();
	while( c < 48 || 57 < c ){
		if(c=='-') f = -1;
		c = getchar();
	}
	while(48 <= c && c <= 57) 
		v = v*10+c-48, c = getchar();
	return v*f;
}

struct Node{
	int v , next , cap ;
}edge[MAX];

int len;
int dis[MAX/4] , head[MAX/4], c[MAX/4] ;
bool vis[MAX/4];

void addedge(int from, int to, int cap)  
{  
    edge[len].v = to;  
    edge[len].cap = cap;  
    edge[len].next = head[from];  
    head[from] = len++;  
}  
bool spfa(int s , int n)
{
	for(int i = 0 ; i <= n ; ++i)
	{
		dis[i] = INF ;
		c[i] = 0 ;
		vis[i] = false ;
	}
	dis[s] = 0 ;
	vis[s] = true ;
	deque<int> que ;
	que.push_front(s) ;
	while(!que.empty())
	{
		int k = que.front() ;
		que.pop_front() ;
		vis[k] = false ;
		c[k]++;
		if(c[k]>n) return false ;
		
		for(int i = head[k] ; i != -1 ; i = edge[i].next)
		{
			if(dis[edge[i].v] > dis[k]+edge[i].cap)
			{
				dis[edge[i].v] = dis[k]+edge[i].cap ;
				if(que.empty())
				{
					que.push_front(edge[i].v) ;
					vis[edge[i].v] = true ;
				}
				else if(!vis[edge[i].v])
				{
					if(dis[edge[i].v] > dis[que.front()])
					{
						que.push_back(edge[i].v) ;
					}
					else
					{
						que.push_front(edge[i].v) ;
					}
					vis[edge[i].v] = true ;
				}
			}
		}
	}
	return true ;
}

int main()
{	
	    int t,r,p,s;
	    int a,b,c;
	    t=read();r=read();p=read();s=read(); 
		memset(head,-1,sizeof(head)) ;
		for(int i = 0 ; i < r; i++)
		{	
		
			a=read();b=read();c=read();
			addedge(a,b,c);
			addedge(b,a,c);
		}
		for(int i = 0 ; i < p ; i++)
		{
			
			a=read();b=read();c=read();
			addedge(a,b,c);
		}
		spfa(s,t) ;
		for(int i = 1 ; i <= t ; i++)
		{
			if(dis[i] >= INF)
			{
				puts("NO PATH") ;
			}
			else
			{
				printf("%d\n",dis[i]) ;
			}
		}	
	return 0 ;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值