问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式
大臣J从城市4到城市5要花费135的路费。
只能写树啦。跑2次dfs。
第一次dfs把起点start跑出来。
第二次dfs再求某两点之间的最大花费。
代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int ans;
const int maxn=1000010;
const int inf=0x3f3f3f3f;
vector<int>G[maxn];
vector<int>E[maxn];
int vis[maxn];
int dis[maxn]; //表示1到其他节点的距离
void dfs(int cur,int fa)
{
vis[cur]=1;
for(int i=0;i<G[cur].size();i++)
{
int v=G[cur][i];
if(vis[v]==1)continue;
if(cur==fa) continue;
dis[v] = dis[cur]+ E[cur][i];
dfs(v,cur);
}
}
/*
5
1 2 2
1 3 1
2 4 5
2 5 4
135
*/
int main()
{
int x,y,w;
cin>>n;
for(int i=0;i<n-1;i++){
cin>>x>>y>>w;
G[x].push_back(y);
E[x].push_back(w);
G[y].push_back(x);
E[y].push_back(w);
}
/*
//节点信息(子节点,边权)测试:
for(int i=1;i<=n;i++){
cout<<i<<"子节点为:";
for(int j=0;j<G[i].size();j++)
cout<<G[i][j]<<' ';
cout<<endl;
}
cout<<endl;
for(int i=1;i<=n;i++){
cout<<i<<"边权:";
for(int j=0;j<G[i].size();j++)
cout<<E[i][j]<<' ';
cout<<endl;
}
cout<<endl;
*/
/***********************************/
//for(int i=1;i<=n;i++){
// dfs(i,0);
//}
memset(vis,0,sizeof(vis));
for(int i=0;i<=n;i++){
if(i==1)dis[i]=0;
else dis[i]=inf;
}
dfs(1,0);
int start=1;
int maxx=1;
for(int i=1;i<=n;i++){
//cout<<"dis="<<dis[i]<<endl;
if(dis[i] > maxx && dis[i]!=inf){
maxx=dis[i];
start=i; //从某一个城市出发
}
}
/***********************************/
memset(vis,0,sizeof(vis));
for(int i=0;i<=n;i++){
if(i==start) dis[i]=0;
else dis[i]=inf;
}
dfs(start,0);
int ans=-1;
for(int i=1;i<=n;i++){
if(dis[i] > ans && dis[i]!=inf){
ans=dis[i];
}
}
/***********************************/
ans=10*ans+ans*(ans+1)/2;
cout<<ans<<endl;
return 0;
}