bzoj 1001: [BeiJing2006]狼抓兔子 最小割

Description

现在小朋友们最喜欢的”喜羊羊与灰太狼”,话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
这里写图片描述
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值.
第二部分共N-1行,每行M个数,表示纵向道路的权值.
第三部分共N-1行,每行M-1个数,表示斜向道路的权值.
输入文件保证不超过10M
Output

输出一个整数,表示参与伏击的狼的最小数量.

Sample Input

3 4

5 6 4

4 3 1

7 5 3

5 6 7 8

8 7 6 5

5 5 5

6 6 6
Sample Output

14

分析:
很显然的最小割,要建双向边。还有一种方法是利用平面图的对偶图。
平面图的最小割等于对偶图的最短路。
平面图删边等于对偶图连边。
洛谷上被卡了,都不知道管理员为什么能过。

代码:

/**************************************************************
    Problem: 1001
    User: liangzihao
    Language: C++
    Result: Accepted
    Time:5384 ms
    Memory:102856 kb
****************************************************************/

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>

const int maxn=1e6+7;
const int maxe=6e6+7;
const int inf=0x3f3f3f3f;

using namespace std;

struct edge{
    int y,w,op,next;
}g[maxe];

int n,m,s,t,cnt,x,ans;
int ls[maxn],dis[maxn];

queue <int> q;

int po(int x,int y)
{
    return (x-1)*m+y;
}

void add(int x,int y,int w)
{
    g[++cnt]=(edge){y,w,cnt+1,ls[x]};
    ls[x]=cnt;
    g[++cnt]=(edge){x,w,cnt-1,ls[y]};
    ls[y]=cnt;
}

bool bfs()
{
    while (!q.empty()) q.pop();
    memset(dis,inf,sizeof(dis));
    dis[s]=0;
    q.push(s);
    while (!q.empty())
    {
        int x=q.front();
        q.pop();
        for (int i=ls[x];i>0;i=g[i].next)
        {
            int y=g[i].y;
            if ((g[i].w) && (dis[y]>dis[x]+1))
            {
                dis[y]=dis[x]+1;
                if (y==t) return 1;
                q.push(y);
            }
        }
    }
    return 0;
}

int dfs(int x,int maxf)
{
    if ((x==t) || (maxf==0)) return maxf;
    int ret=0;
    for (int i=ls[x];i>0;i=g[i].next)
    {
        int y=g[i].y;
        if ((dis[y]==dis[x]+1) && (g[i].w))
        {
            int f=dfs(y,min(maxf-ret,g[i].w));
            if (!f) dis[y]=0;
            ret+=f;
            g[i].w-=f;
            g[g[i].op].w+=f;
        }
    }
    return ret;
}

int main()
{
    scanf("%d%d",&n,&m);
    s=1; t=po(n,m);     
   for (int i=1;i<=n;i++)
    {
        for (int j=1;j<m;j++)
        {
            scanf("%d",&x);
            add(po(i,j),po(i,j+1),x);
        }
    }
    for (int i=1;i<n;i++)
    {
        for (int j=1;j<=m;j++)
        {
            scanf("%d",&x);
            add(po(i,j),po(i+1,j),x);
        }
    }
    for (int i=1;i<n;i++)
    {
        for (int j=1;j<m;j++)
        {
            scanf("%d",&x);
            add(po(i,j),po(i+1,j+1),x);
        }
    }   
    while (bfs()) ans+=dfs(s,inf);
    printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值