Description
现在小朋友们最喜欢的”喜羊羊与灰太狼”,话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值.
第二部分共N-1行,每行M个数,表示纵向道路的权值.
第三部分共N-1行,每行M-1个数,表示斜向道路的权值.
输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
14
分析:
很显然的最小割,要建双向边。还有一种方法是利用平面图的对偶图。
平面图的最小割等于对偶图的最短路。
平面图删边等于对偶图连边。
洛谷上被卡了,都不知道管理员为什么能过。
代码:
/**************************************************************
Problem: 1001
User: liangzihao
Language: C++
Result: Accepted
Time:5384 ms
Memory:102856 kb
****************************************************************/
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>
const int maxn=1e6+7;
const int maxe=6e6+7;
const int inf=0x3f3f3f3f;
using namespace std;
struct edge{
int y,w,op,next;
}g[maxe];
int n,m,s,t,cnt,x,ans;
int ls[maxn],dis[maxn];
queue <int> q;
int po(int x,int y)
{
return (x-1)*m+y;
}
void add(int x,int y,int w)
{
g[++cnt]=(edge){y,w,cnt+1,ls[x]};
ls[x]=cnt;
g[++cnt]=(edge){x,w,cnt-1,ls[y]};
ls[y]=cnt;
}
bool bfs()
{
while (!q.empty()) q.pop();
memset(dis,inf,sizeof(dis));
dis[s]=0;
q.push(s);
while (!q.empty())
{
int x=q.front();
q.pop();
for (int i=ls[x];i>0;i=g[i].next)
{
int y=g[i].y;
if ((g[i].w) && (dis[y]>dis[x]+1))
{
dis[y]=dis[x]+1;
if (y==t) return 1;
q.push(y);
}
}
}
return 0;
}
int dfs(int x,int maxf)
{
if ((x==t) || (maxf==0)) return maxf;
int ret=0;
for (int i=ls[x];i>0;i=g[i].next)
{
int y=g[i].y;
if ((dis[y]==dis[x]+1) && (g[i].w))
{
int f=dfs(y,min(maxf-ret,g[i].w));
if (!f) dis[y]=0;
ret+=f;
g[i].w-=f;
g[g[i].op].w+=f;
}
}
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
s=1; t=po(n,m);
for (int i=1;i<=n;i++)
{
for (int j=1;j<m;j++)
{
scanf("%d",&x);
add(po(i,j),po(i,j+1),x);
}
}
for (int i=1;i<n;i++)
{
for (int j=1;j<=m;j++)
{
scanf("%d",&x);
add(po(i,j),po(i+1,j),x);
}
}
for (int i=1;i<n;i++)
{
for (int j=1;j<m;j++)
{
scanf("%d",&x);
add(po(i,j),po(i+1,j+1),x);
}
}
while (bfs()) ans+=dfs(s,inf);
printf("%d",ans);
}