洛谷 P4239 【模板】多项式求逆(加强版)任意模数fft

题目描述

给定一个多项式 F(x) F ( x ) ,请求出一个多项式 G(x) G ( x ) ,满足 F(x)G(x)1(mod xn) F ( x ) ∗ G ( x ) ≡ 1 ( m o d   x n ) 。系数对 109+7 10 9 + 7 取模。

输入输出格式

输入格式:
首先输入一个整数 n n ,表示输入多项式的次数。
接着输入n个整数,第 i i 个整数ai,代表 F(x) F ( x ) 次数为 i1 i − 1 的项的系数。

输出格式:
输出 n n 个数字,第i个整数 bi b i ,代表 G(x) G ( x ) 次数为 i1 i − 1 的项的系数。

输入输出样例

输入样例#1:
5
1 6 3 4 9
输出样例#1:
1 998244347 33 998244169 1020
说明
1n105,0ai109 1 ≤ n ≤ 10 5 , 0 ≤ a i ≤ 10 9

分析:
这题就用来复习多项式求逆和任意模。
还是直接结论,设 A(x) A ( x ) 为原多项式, B(x) B ( x ) 为在 xn x n 意义下的逆元, B(x) B ′ ( x ) 为在 xn2 x n 2 的逆元,有

B(x)2B(x)A(x)B(x)2 B ( x ) ≡ 2 B ′ ( x ) − A ( x ) B ′ ( x ) 2

因为模数是 109+7 10 9 + 7 ,肯定是不能 ntt n t t 的。像我这种习惯打任意模的丝毫没有影响,因为任意模是 2 2 DFT 2 2 IDFT,而 ntt n t t 2 2 DFT 1 1 IDFT,不会慢多少。

代码:

// luogu-judger-enable-o2
#include <iostream>
#include <cmath>
#include <cstdio>
#define LL long long

const int maxn=3e5+7;
const double pi=acos(-1);
const LL mod=1e9+7;

using namespace std;

int n,len,r[maxn];
LL f[maxn],g[maxn],c[maxn];

struct rec{
    double x,y;
}a[maxn],b[maxn],w[maxn],dfna[maxn],dfnb[maxn],dfnc[maxn],dfnd[maxn];

rec operator +(rec a,rec b)
{
    return (rec){a.x+b.x,a.y+b.y};
}

rec operator -(rec a,rec b)
{
    return (rec){a.x-b.x,a.y-b.y};
}

rec operator *(rec a,rec b)
{
    return (rec){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}

rec operator !(rec a)
{
    return (rec){a.x,-a.y};
}

void fft(rec *a,int f)
{
    for (int i=0;i<len;i++)
    {
        if (i<r[i]) swap(a[i],a[r[i]]);
    }
    w[0]=(rec){1,0};
    for (int i=2;i<=len;i*=2)
    {
        rec wn=(rec){cos(2*pi/i),f*sin(2*pi/i)};
        for (int j=i/2;j>=0;j-=2) w[j]=w[j/2];
        for (int j=1;j<i/2;j+=2) w[j]=w[j-1]*wn;
        for (int j=0;j<len;j+=i)
        {
            for (int k=0;k<i/2;k++)
            {
                rec u=a[j+k],v=w[k]*a[j+k+i/2];
                a[j+k]=u+v;
                a[j+k+i/2]=u-v;
            }
        }
    }
}

void FFT(LL *x,LL *y,LL *z,LL n,LL m)
{
    len=1;
    while (len<=n+m) len*=2;
    int k=trunc(log(len+0.5)/log(2));
    for (int i=0;i<len;i++)
    {
        r[i]=(r[i>>1]>>1)|((i&1)<<(k-1));
    }
    for (int i=0;i<len;i++)
    {
        LL A,B;
        if (i<n) A=x[i]; else A=0;
        if (i<m) B=y[i]; else B=0;   
        a[i]=(rec){A>>15,A&32767};
        b[i]=(rec){B>>15,B&32767};
    }
    fft(a,1); fft(b,1);
    for (int i=0;i<len;i++)
    {
        int j=(len-1)&(len-i);
        rec da,db,dc,dd;
        da=(a[i]+(!a[j]))*(rec){0.5,0};
        db=(a[i]-(!a[j]))*(rec){0,-0.5};
        dc=(b[i]+(!b[j]))*(rec){0.5,0};
        dd=(b[i]-(!b[j]))*(rec){0,-0.5};
        dfna[i]=da*dc;
        dfnb[i]=da*dd;
        dfnc[i]=db*dc;
        dfnd[i]=db*dd;
    }
    for (int i=0;i<len;i++)
    {
        a[i]=dfna[i]+dfnb[i]*(rec){0,1};
        b[i]=dfnc[i]+dfnd[i]*(rec){0,1};
    }
    fft(a,-1); fft(b,-1);
    for (int i=0;i<len;i++)
    {
        LL da,db,dc,dd;
        da=(LL)(a[i].x/len+0.5)%mod;
        db=(LL)(a[i].y/len+0.5)%mod;
        dc=(LL)(b[i].x/len+0.5)%mod;
        dd=(LL)(b[i].y/len+0.5)%mod;
        z[i]=((da<<30)%mod+((db+dc)<<15)%mod+dd)%mod;
    }
}

LL power(LL x,LL y)
{
    if (y==1) return x;
    LL c=power(x,y/2);
    c=(c*c)%mod;
    if (y%2) c=(c*x)%mod;
    return c;
}

void solve(LL *f,LL *g,int d)
{
    if (d==1)
    {
        g[0]=power(f[0],mod-2);
        return;
    }
    int mid=(d+1)/2;
    solve(f,g,mid); 
    FFT(f,g,c,n,mid);   
    c[0]=(2+mod-c[0])%mod;
    for (int i=1;i<n+mid;i++) c[i]=(mod-c[i])%mod;
    FFT(c,g,g,n+mid,mid);
}

int main()
{
    scanf("%d",&n);
    for (int i=0;i<n;i++) scanf("%lld",&f[i]);  
    solve(f,g,n);
    for (int i=0;i<n;i++) printf("%lld ",g[i]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值