题目描述
聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2…..n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000
输入输出格式
输入格式:
输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。
输出格式:
对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。
输入输出样例
输入样例#1:
2
4
1 0 1 5000
3
0 0 1
输出样例#1:
0 2 3
1
-1 -1 -1
0
分析:
好像这个叫做阶梯博弈。每一颗棋子都是独立的,可以回想之前那种往前跳
1
1
到步的棋子,也就是在同一位置每颗棋子都是一样的。我们先跑出每个位置的
sg
s
g
值,就是分裂后两个位置
sg
s
g
值的异或再取
mex
m
e
x
,然后对于奇数的阶梯就累加上答案。对于输出方案数及方案,假设当前异或和为
l
l
,取了三个位置,那么就要
l xor i xor j xor k=0
l
x
o
r
i
x
o
r
j
x
o
r
k
=
0
,因为这三个位置奇偶性改变。
代码:
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
int test,n,m,ans;
int a[25],sg[25],l;
int h[10007];
int main()
{
scanf("%d",&test);
while (test--)
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sg[i]=0;
}
for (int i=n-1;i>0;i--)
{
memset(h,0,sizeof(h));
for (int j=i+1;j<=n;j++)
{
for (int k=j;k<=n;k++)
{
h[sg[j]^sg[k]]=1;
}
}
for (int j=0;j<10000;j++)
{
if (!h[j])
{
sg[i]=j;
break;
}
}
}
l=0;
for (int i=1;i<=n;i++)
{
if (a[i]&1) l^=sg[i];
}
if (!l)
{
printf("-1 -1 -1\n0\n");
continue;
}
ans=0;
for (int i=1;i<=n;i++)
{
if (!a[i]) continue;
for (int j=i+1;j<=n;j++)
{
for (int k=j;k<=n;k++)
{
if (!(l^sg[i]^sg[j]^sg[k]))
{
ans++;
if (ans==1) printf("%d %d %d\n",i-1,j-1,k-1);
}
}
}
}
printf("%d\n",ans);
}
}