Description
国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。
我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。
在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a,b 的最短路径。
现在国家有很多个计划,每个计划都是这样,我们选中了 k 个点,然后在它们两两之间 新建 C(k,2)条 新通道。
现在对于每个计划,我们想知道:
1.这些新通道的代价和
2.这些新通道中代价最小的是多少
3.这些新通道中代价最大的是多少
Input
第一行 n 表示点数。
接下来 n-1 行,每行两个数 a,b 表示 a 和 b 之间有一条边。
点从 1 开始标号。 接下来一行 q 表示计划数。
对每个计划有 2 行,第一行 k 表示这个计划选中了几个点。
第二行用空格隔开的 k 个互不相同的数表示选了哪 k 个点。
Output
输出 q 行,每行三个数分别表示代价和,最小代价,最大代价。
Sample Input
10
2 1
3 2
4 1
5 2
6 4
7 5
8 6
9 7
10 9
5
2
5 4
2
10 4
2
5 2
2
6 1
2
6 1
Sample Output
3 3 3
6 6 6
1 1 1
2 2 2
2 2 2
HINT
n<=1000000
q<=50000并且保证所有k之和<=2*n
分析:
直接把虚树建出来,然后枚举
lca
l
c
a
,处理出一定经过这个点的路径的最大值,最小值,权值和,再合并整棵树的答案。
洛谷上莫名RE,好像好多人都RE了,连标程都RE了。
代码:
/**************************************************************
Problem: 3611
User: liangzihao
Language: C++
Result: Accepted
Time:8964 ms
Memory:169192 kb
****************************************************************/
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
#define LL long long
const int maxn=1e6+7;
const int inf=0x3f3f3f3f;
using namespace std;
int n,m,x,y,cnt,tot,top;
int ls[maxn],dfn[maxn],dep[maxn],a[maxn],q[maxn];
int maxx[maxn],minn[maxn],size[maxn],pre[maxn];
LL ans1;
LL sum[maxn];
int ans2,ans3;
int f[maxn][20];
struct node{
int x,key;
}b[maxn];
struct edge{
int y,next;
}g[maxn*2];
bool cmp(int x,int y)
{
return dfn[x]<dfn[y];
}
bool cmp1(node x,node y)
{
return dfn[x.x]<dfn[y.x];
}
void add(int x,int y)
{
g[++cnt]=(edge){y,ls[x]};
ls[x]=cnt;
}
void dfs(int x,int fa)
{
dfn[x]=++cnt;
dep[x]=dep[fa]+1;
f[x][0]=fa;
for (int i=ls[x];i>0;i=g[i].next)
{
int y=g[i].y;
if (y==fa) continue;
dfs(y,x);
}
}
int lca(int x,int y)
{
if (dep[x]>dep[y]) swap(x,y);
int d=dep[y]-dep[x],k=19,t=1<<k;
while (d)
{
if (d>=t)
{
d-=t;
y=f[y][k];
}
t/=2,k--;
}
if (x==y) return x;
k=19;
while (k>=0)
{
if (f[x][k]!=f[y][k])
{
x=f[x][k];
y=f[y][k];
}
k--;
}
return f[x][0];
}
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
cnt=0;
dfs(1,0);
for (int j=1;j<20;j++)
{
for (int i=1;i<=n;i++)
{
f[i][j]=f[f[i][j-1]][j-1];
}
}
scanf("%d",&m);
for (int i=1;i<=m;i++)
{
scanf("%d",&tot);
for (int j=1;j<=tot;j++) scanf("%d",&a[j]);
sort(a+1,a+tot+1,cmp);
top=0,cnt=0;
q[++top]=a[1];
b[++cnt]=(node){a[1],1};
for (int j=2;j<=tot;j++)
{
b[++cnt]=(node){a[j],1};
int d=lca(q[top],a[j]);
if (d==q[top]) q[++top]=a[j];
else
{
while (dep[q[top-1]]>=dep[d])
{
pre[q[top]]=q[top-1];
top--;
}
if (q[top]!=d)
{
pre[q[top]]=d;
q[top]=d;
b[++cnt]=(node){d,0};
}
q[++top]=a[j];
}
}
while (top>1) pre[q[top]]=q[top-1],top--;
sort(b+1,b+cnt+1,cmp1);
for (int i=1;i<=cnt;i++)
{
if (b[i].key)
{
size[b[i].x]=1;
maxx[b[i].x]=minn[b[i].x]=sum[b[i].x]=0;
}
else
{
size[b[i].x]=maxx[b[i].x]=sum[b[i].x]=0;
minn[b[i].x]=inf;
}
}
ans1=ans3=0;
ans2=inf;
for (int i=cnt;i>1;i--)
{
int x=b[i].x;
ans1+=sum[pre[x]]*(LL)size[x]+sum[x]*(LL)size[pre[x]]+(LL)size[x]*(LL)size[pre[x]]*((LL)dep[x]-(LL)dep[pre[x]]);
ans2=min(ans2,minn[pre[x]]+minn[x]+dep[x]-dep[pre[x]]);
ans3=max(ans3,maxx[pre[x]]+maxx[x]+dep[x]-dep[pre[x]]);
size[pre[x]]+=size[x];
sum[pre[x]]+=sum[x]+(LL)size[x]*((LL)dep[x]-(LL)dep[pre[x]]);
minn[pre[x]]=min(minn[pre[x]],minn[x]+dep[x]-dep[pre[x]]);
maxx[pre[x]]=max(maxx[pre[x]],maxx[x]+dep[x]-dep[pre[x]]);
}
printf("%lld %d %d\n",ans1,ans2,ans3);
}
}