bzoj 4372: 烁烁的游戏 动态点分治+线段树

Description

背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠。
题意:
给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠。
烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w只皮皮鼠。皮皮鼠会被烁烁吸引,所以会一直待在节点上不动。
烁烁很好奇,在当前时刻,节点u有多少个他的好朋友—皮皮鼠。
大意:
给一颗n个节点的树,边权均为1,初始点权均为0,m次操作:
Q x:询问x的点权。
M x d w:将树上与节点x距离不超过d的节点的点权均加上w。

Input

第一行两个正整数:n,m
接下来的n-1行,每行三个正整数u,v,代表u,v之间有一条边。
接下来的m行,每行给出上述两种操作中的一种。

Output

对于每个Q操作,输出当前x节点的皮皮鼠数量。

Sample Input

7 6

1 2

1 4

1 5

2 3

2 7

5 6

M 1 1 2

Q 5

M 2 2 3

Q 3

M 1 2 1

Q 2
Sample Output

2

3

6

HINT

数据范围:

nm<=105,w<=104n,m<=10^5,|w|<=10^4

注意:w不一定为正整数,因为烁烁可能把皮皮鼠吓傻了。

分析:
考虑到树上距离,又是修改,直接把点分树建出来。
对于修改一个点xx,把这个点在点分治的连通块中小于等于lenlen的节点修改;对于他的祖先,把除了当前连通块的其他连通块的小于lendis(x,anc[x])len-dis(x,anc[x])的点修改。
我们可以先对所有节点加上一个数,在修改点所在连通块的点减去一个数。
先把距离排序,我们可以对每个节点开一个线段树,每次相当于区间加,这题就完了。

一些小细节:
我们可以在每个节点开两个线段树,一个是下标为到当前分治中心距离为下标,另一个是到父亲分治中心距离为下标。修改当前节点时,在当前节点全部加,在对应儿子减掉。询问就是这个节点到根路径上所有与他相关的修改的和。线段树可以使用永久标记。

代码:

/**************************************************************
    Problem: 4372
    User: ypxrain
    Language: C++
    Result: Accepted
    Time:23672 ms
    Memory:179664 kb
****************************************************************/
 
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
 
const int maxn=1e5+7;
 
using namespace std;
 
int n,m,x,y,k,cnt;
int ls[maxn],f[maxn][20],dep[maxn];
char op[3];
 
struct edge{
    int y,next;
}g[maxn*2];
 
struct node{
    int l,r,data;
}t[maxn*120];
 
void add(int x,int y)
{
    g[++cnt]=(edge){y,ls[x]};
    ls[x]=cnt;
}
 
void dfs(int x,int fa)
{
    f[x][0]=fa;
    for (int i=ls[x];i>0;i=g[i].next)
    {
        int y=g[i].y;
        if (y==fa) continue;
        dep[y]=dep[x]+1;
        dfs(y,x);
    }
}
 
int getlca(int x,int y)
{
    if (dep[x]>dep[y]) swap(x,y);
    int d=dep[y]-dep[x],k=19,t=1<<k;
    while (d)
    {
        if (d>=t) d-=t,y=f[y][k];
        t/=2,k--;
    }
    if (x==y) return x;
    k=19;
    while (k>=0)
    {
        if (f[x][k]!=f[y][k])
        {
            x=f[x][k];
            y=f[y][k];
        }
        k--;
    }
    return f[x][0];
}
 
int getdis(int x,int y)
{
    return dep[x]+dep[y]-2*dep[getlca(x,y)];
}
 
void ins(int &p,int l,int r,int x,int y,int k)
{
    if (!p) p=++cnt;
    if ((l==x) && (r==y))
    {
        t[p].data+=k;
        return;
    }
    int mid=(l+r)/2;
    if (y<=mid) ins(t[p].l,l,mid,x,y,k);
    else if (x>mid) ins(t[p].r,mid+1,r,x,y,k);
    else
    {
        ins(t[p].l,l,mid,x,mid,k);
        ins(t[p].r,mid+1,r,mid+1,y,k);
    }
}
 
int getsum(int p,int l,int r,int x)
{
    if (l==r) return t[p].data;
    int mid=(l+r)/2;
    if (x<=mid) return t[p].data+getsum(t[p].l,l,mid,x);
           else return t[p].data+getsum(t[p].r,mid+1,r,x);
}
 
struct tree{
    int fa[maxn],root1[maxn],root2[maxn],S[maxn];
    int size[maxn],vis[maxn],len[maxn],f[maxn],root,sum;
    vector <int> dis1[maxn],dis2[maxn];
    queue <int> q;
    void findroot(int x,int F)
    {
        size[x]=1;
        f[x]=0;
        for (int i=ls[x];i>0;i=g[i].next)
        {
            int y=g[i].y;
            if ((y==F) || (vis[y])) continue;
            findroot(y,x);
            size[x]+=size[y];
            f[x]=max(f[x],size[y]);
        }
        f[x]=max(f[x],sum-size[x]);
    if ((f[x]<f[root]) || (!root)) root=x;
    } 
 
    void dfs(int x,int F)
    {
        size[x]=1;
        dis1[root].push_back(len[x]);
        if (fa[root]) dis2[root].push_back(getdis(fa[root],x));
        for (int i=ls[x];i>0;i=g[i].next)
        {
            int y=g[i].y;
            if ((vis[y]) || (y==F)) continue;
            len[y]=len[x]+1;
            dfs(y,x);
            size[x]+=size[y];
            if (x==root)
            {
                fa[y]=x;
                q.push(y);
            }
        }
    }
    void build()
    {
        q.push(1);
        size[1]=n;
        while (!q.empty())
        {
            int x=q.front();
            q.pop();            
            sum=size[x];
            root=0;
            findroot(x,0);
            fa[root]=fa[x];
            len[root]=0;
            dfs(root,0);
            vis[root]=1;
            S[root]=dis1[root].size();
            sort(dis1[root].begin(),dis1[root].end());
            sort(dis2[root].begin(),dis2[root].end());
        }
    }
    void change(int x,int len,int k)
    {       
        int s;
        s=upper_bound(dis1[x].begin(),dis1[x].end(),len)-dis1[x].begin();
        if (s>=1) ins(root1[x],1,S[x],1,s,k);
        for (int i=x;fa[i];i=fa[i])
        {
            int j=fa[i];
            int d=len-getdis(x,j);
            s=upper_bound(dis1[j].begin(),dis1[j].end(),d)-dis1[j].begin();
            if (s>=1) ins(root1[j],1,S[j],1,s,k);
            s=upper_bound(dis2[i].begin(),dis2[i].end(),d)-dis2[i].begin();
            if (s>=1) ins(root2[i],1,S[i],1,s,k);
        }
    }
    int getans(int x)
    {       
        int s,ans;
        ans=getsum(root1[x],1,S[x],1);
        for (int i=x;fa[i];i=fa[i])
        {
            int j=fa[i];
            int d=getdis(x,j);
            s=lower_bound(dis1[j].begin(),dis1[j].end(),d)-dis1[j].begin()+1;
            ans+=getsum(root1[j],1,S[j],s);
            s=lower_bound(dis2[i].begin(),dis2[i].end(),d)-dis2[i].begin()+1;
            ans-=getsum(root2[i],1,S[i],s);
        }
        return ans;
    }
}T;
 
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<n;i++)
    {
        scanf("%d%d",&x,&y);
        add(x,y);
        add(y,x);
    }
    dfs(1,0);
    for (int j=1;j<20;j++)
    {
        for (int i=1;i<=n;i++) f[i][j]=f[f[i][j-1]][j-1];
    }   
    T.build();  
    for (int i=1;i<=m;i++)
    {
        scanf("%s",op);
        if (op[0]=='M')
        {
            scanf("%d%d%d",&x,&y,&k);
            T.change(x,y,k);
        }
        else
        {
            scanf("%d",&x);
            printf("%d\n",T.getans(x));
        }
    }
}
发布了720 篇原创文章 · 获赞 38 · 访问量 14万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览