jzoj 4213.【五校联考1day2】对你的爱深不见底 斐波那契数列+高精度

本文介绍了一种基于神奇字符串的权值计算方法,用于解决小R在明信片上提出的问题。通过定义特殊字符串序列和权值概念,文章提供了解决方案并分析了算法效率,适用于特定数学和算法竞赛场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

出乎意料的是,幸运E的小R居然赢了那个游戏。现在欣喜万分的小R想要写一张明信片给小Y,但是因为小R非常羞涩,所以他打算采用一些比较神奇的方式来表达。
他定义了一些字符串,s1=as_1=as1=as2=bs_2 = bs2=bsi=si−1+si−2(i&gt;=3)si =s_{i-1}+s_{i-2} (i &gt;=3)si=si1+si2(i>=3)。同时他定义了一个字符串s 的权值为一个最大的i&lt;∣s∣i &lt;|s|i<s满足sss长度为iii的前缀等于长度为iii的后缀。比如字符串aba 的权值就是1,abab 的权值就是2,aaaa 的权值就是3。
现在小R 在明信片上给出了两个数nnnmmm,他想要告诉小Y 的信息是字符串sns_nsn 的前mmm个字符组成的字符串的权值。你可以帮小Y计算一下吗?

Input

第一行输入一个正整数TTT表示数据组数。
对于每组数据,第一行是两个整数n,mn,mn,m。保证1&lt;=m&lt;=∣sn∣1&lt;= m &lt;=|s_n|1<=m<=sn

Output

对于每组数据,输出一个整数表示答案。答案可能很大,你只需要输出模258280327后的答案。

Sample Input

2
4 3
5 5

Sample Output

1
2

Data Constraint

对于30%30\%30%的数据,n&lt;=20n &lt;= 20n<=20
对于60%60\%60%的数据,n&lt;=60n &lt;= 60n<=60
对于100%100\%100%的数据,n&lt;=103,1&lt;=T&lt;=100n &lt;= 10^3,1 &lt;= T &lt;= 100n<=1031<=T<=100

分析:
i&gt;=3i &gt;= 3i>=3时,满足si−1s_{i-1}si1sis_isi的前缀,也就是我们找到第一个长度大于mmm的字符就可以了,与nnn无关。
然后打表发现,设kkk是满足∣sk∣&gt;m+1|s_k|&gt;m+1sk>m+1的最小整数,那么答案就是m−∣sk−2∣m-|s_{k-2}|msk2
直接高精度即可,最后要高精取膜。

代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#define LL long long

const int maxn=1007;
const int bit=1e7;
const LL mod=258280327; 

using namespace std;

int n,num,len,ans,T;
int a[maxn],b[maxn],c[maxn],h[maxn],f[maxn],p[maxn];
char s[maxn];

void getsum(int *a,int *b,int *c)
{
	int len=max(a[0],b[0]);
	int z=0;
	for (int i=1;i<=len;i++)
	{
		c[i]=a[i]+b[i]+z;
		z=c[i]/bit;
		c[i]=c[i]%bit;
	}
	c[0]=len;
	if (z) c[++c[0]]=z;
}

bool check(int *a,int *b)
{
	if (a[0]>b[0]) return 1;
	if (a[0]<b[0]) return 0;
	int k=a[0];
	while ((k>0) && (a[k]==b[k])) k--;
	if (a[k]<b[k]) return 0;
	return 1;
}

void getans(int *a,int *b)
{
	memset(c,0,sizeof(c));
	for (int i=1;i<=a[0];i++)
	{
		if (a[i]>=b[i]) c[i]=a[i]-b[i];
		else
		{
			a[i+1]--;
			c[i]=a[i]+bit-b[i];
		}
	}	
	int num=1;
	while (c[num]) num++;
	c[0]=num-1;
	ans=0;
	for (int i=c[0];i>0;i--)
	{
		ans=((LL)ans*(LL)bit+(LL)c[i])%mod;
	}
}

int main()
{
	scanf("%d",&T);	
	while (T--)
	{
		scanf("%d",&n);
		scanf("%s",s+1);
		len=strlen(s+1);
		memset(a,0,sizeof(a));
		memset(b,0,sizeof(b));
		memset(c,0,sizeof(c));
		memset(h,0,sizeof(h));
		memset(f,0,sizeof(f));
		num=0;
		p[0]=1;
		for (int i=1;i<7;i++) p[i]=p[i-1]*10;		
		for (int i=len;i>0;i--)
		{
			if (!num) h[0]++;
			h[h[0]]=h[h[0]]+(s[i]-'0')*p[num];
			num=(num+1)%7;
		}				
		c[0]=1,c[1]=2;
		getsum(h,c,f);	
		a[0]=1,a[1]=1;
		b[0]=1,b[1]=1;					
		for (int i=3;i<=n+5;i++)
		{
			getsum(a,b,c);
			if (check(c,f))
			{				
				getans(h,a);
				break;
			}
			for (int i=0;i<=b[0];i++) a[i]=b[i];
			for (int i=0;i<=c[0];i++) b[i]=c[i];
		}
		printf("%d\n",ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值