Description
出乎意料的是,幸运E的小R居然赢了那个游戏。现在欣喜万分的小R想要写一张明信片给小Y,但是因为小R非常羞涩,所以他打算采用一些比较神奇的方式来表达。
他定义了一些字符串,s1=as_1=as1=a,s2=bs_2 = bs2=b,si=si−1+si−2(i>=3)si =s_{i-1}+s_{i-2} (i >=3)si=si−1+si−2(i>=3)。同时他定义了一个字符串s 的权值为一个最大的i<∣s∣i <|s|i<∣s∣满足sss长度为iii的前缀等于长度为iii的后缀。比如字符串aba 的权值就是1,abab 的权值就是2,aaaa 的权值就是3。
现在小R 在明信片上给出了两个数nnn和mmm,他想要告诉小Y 的信息是字符串sns_nsn 的前mmm个字符组成的字符串的权值。你可以帮小Y计算一下吗?
Input
第一行输入一个正整数TTT表示数据组数。
对于每组数据,第一行是两个整数n,mn,mn,m。保证1<=m<=∣sn∣1<= m <=|s_n|1<=m<=∣sn∣
Output
对于每组数据,输出一个整数表示答案。答案可能很大,你只需要输出模258280327后的答案。
Sample Input
2
4 3
5 5
Sample Output
1
2
Data Constraint
对于30%30\%30%的数据,n<=20n <= 20n<=20
对于60%60\%60%的数据,n<=60n <= 60n<=60
对于100%100\%100%的数据,n<=103,1<=T<=100n <= 10^3,1 <= T <= 100n<=103,1<=T<=100
分析:
当i>=3i >= 3i>=3时,满足si−1s_{i-1}si−1是sis_isi的前缀,也就是我们找到第一个长度大于mmm的字符就可以了,与nnn无关。
然后打表发现,设kkk是满足∣sk∣>m+1|s_k|>m+1∣sk∣>m+1的最小整数,那么答案就是m−∣sk−2∣m-|s_{k-2}|m−∣sk−2∣。
直接高精度即可,最后要高精取膜。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#define LL long long
const int maxn=1007;
const int bit=1e7;
const LL mod=258280327;
using namespace std;
int n,num,len,ans,T;
int a[maxn],b[maxn],c[maxn],h[maxn],f[maxn],p[maxn];
char s[maxn];
void getsum(int *a,int *b,int *c)
{
int len=max(a[0],b[0]);
int z=0;
for (int i=1;i<=len;i++)
{
c[i]=a[i]+b[i]+z;
z=c[i]/bit;
c[i]=c[i]%bit;
}
c[0]=len;
if (z) c[++c[0]]=z;
}
bool check(int *a,int *b)
{
if (a[0]>b[0]) return 1;
if (a[0]<b[0]) return 0;
int k=a[0];
while ((k>0) && (a[k]==b[k])) k--;
if (a[k]<b[k]) return 0;
return 1;
}
void getans(int *a,int *b)
{
memset(c,0,sizeof(c));
for (int i=1;i<=a[0];i++)
{
if (a[i]>=b[i]) c[i]=a[i]-b[i];
else
{
a[i+1]--;
c[i]=a[i]+bit-b[i];
}
}
int num=1;
while (c[num]) num++;
c[0]=num-1;
ans=0;
for (int i=c[0];i>0;i--)
{
ans=((LL)ans*(LL)bit+(LL)c[i])%mod;
}
}
int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
scanf("%s",s+1);
len=strlen(s+1);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
memset(h,0,sizeof(h));
memset(f,0,sizeof(f));
num=0;
p[0]=1;
for (int i=1;i<7;i++) p[i]=p[i-1]*10;
for (int i=len;i>0;i--)
{
if (!num) h[0]++;
h[h[0]]=h[h[0]]+(s[i]-'0')*p[num];
num=(num+1)%7;
}
c[0]=1,c[1]=2;
getsum(h,c,f);
a[0]=1,a[1]=1;
b[0]=1,b[1]=1;
for (int i=3;i<=n+5;i++)
{
getsum(a,b,c);
if (check(c,f))
{
getans(h,a);
break;
}
for (int i=0;i<=b[0];i++) a[i]=b[i];
for (int i=0;i<=c[0];i++) b[i]=c[i];
}
printf("%d\n",ans);
}
}