Description
Input
Output
Sample Input
4
1 1 7
14 2 1
1 2 2
1 1 10
10 10 1
5 7 2
5 3 34
1 4 1
9 4 2
5 3 3
1 3 3
5 3 2
3 4 5
6 7 5
5 3 8
1 1 1
1 2 1
1 1 1
Sample Output
4
14
12
TAT
Data Constraint
分析:
两个多重背包。
设
f
[
i
]
[
j
]
f[i][j]
f[i][j]为前
i
i
i件食物,美味度和为
j
j
j,食物大小的最小值。
g
[
i
]
[
j
]
g[i][j]
g[i][j]为前
i
i
i件载具,花费为
j
j
j,载具容量的最大值。
然后找到一个最小的
s
s
s满足
g
[
m
]
[
s
]
>
=
f
[
n
]
[
p
]
g[m][s]>=f[n][p]
g[m][s]>=f[n][p]即可。
要用单调队列优化dp。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
const int maxn=207;
const int maxp=5e4+7;
using namespace std;
int test,n,m,p,g,num,u[maxn],v[maxn],w[maxn];
int f[2][maxp],q[maxp];
int h,t;
int main()
{
scanf("%d",&test);
while (test--)
{
scanf("%d%d%d",&n,&m,&p);
for (int i=1;i<=n;i++) scanf("%d%d%d",&u[i],&v[i],&w[i]);
for (int j=0;j<=p;j++) f[0][j]=0x3f3f3f3f;
f[0][0]=0;
g=0;
for (int i=1;i<=n;i++)
{
g^=1;
for (int j=0;j<=p;j++) f[g][j]=0x3f3f3f3f;
for (int j=0;j<u[i];j++)
{
f[g][j]=min(f[g][j],f[g^1][j]);
h=1,t=0;
for (int k=j;k<p;k+=u[i])
{
int l=k+u[i],r=min(l,p);
f[g][r]=min(f[g][r],f[g^1][r]);
while ((h<=t) && (f[g^1][k]<f[g^1][q[t]]+(k-q[t])/u[i]*v[i])) t--;
q[++t]=k;
while ((h<=t) && ((l-q[h])/u[i]>w[i])) h++;
f[g][r]=min(f[g][r],f[g^1][q[h]]+(l-q[h])/u[i]*v[i]);
}
}
}
num=f[g][p];
for (int i=1;i<=m;i++) scanf("%d%d%d",&v[i],&u[i],&w[i]);
p=50000;
for (int j=0;j<=p;j++) f[0][j]=0;
g=0;
for (int i=1;i<=m;i++)
{
g^=1;
for (int j=0;j<=p;j++) f[g][j]=0;
for (int j=0;j<u[i];j++)
{
h=1,t=0;
for (int l=0;l*u[i]+j<=p;l++)
{
int k=l*u[i]+j;
while ((h<=t) && (f[g^1][k]>f[g^1][q[t]*u[i]+j]+(l-q[t])*v[i])) t--;
q[++t]=l;
while ((h<=t) && (l-q[h]>w[i])) h++;
f[g][k]=max(f[g][k],f[g^1][q[h]*u[i]+j]+(l-q[h])*v[i]);
}
}
}
int d=0x3f3f3f3f;
for (int i=0;i<=p;i++)
{
if (f[g][i]>=num)
{
d=i;
break;
}
}
if (d==0x3f3f3f3f) printf("TAT\n");
else printf("%d\n",d);
}
}