Dijkstra算法
适用于单源最短路且边权都为正数
例:输入有向图/无向图,输出n号点到1号点的最短距离
①朴素版(适用于稠密图)
-
初始化距离
dist[1] = 0; //1为起点 dist[i] = 正无穷;
-
Si记为当前已确定最短距离的点
for i : 0 ~ n t <- 不在S中的距离最短的点 S <- t 用t更新其它点到源点的距离
具体实现
输出1号点到n号点的最短距离
用二维数组存有向图
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510;
int n,m;
int g[N][N],dist[N];
bool st[N];
int dijkstra()
{
//初始化
memset(dist,0x3f3f3f3f,sizeof dist);
dist[1] = 0;
for(int i = 0; i < n; i++) //共n个点,需要将n个点距离起点的距离都更新为最短距离,都需要加入Si
{
int t = -1;
//找出不在S中但距离最短的
for(int j = 1; j <= n; j++)
{
if(!st[j] && ( t == -1 || dist[t] > dist[j]))
{
t = j;
}
}
st[t] = true; //加入S
//用该点t更新其他点的距离
for(int j = 1; j <= n; j++)
{
dist[j] = min(dist[j], dist[t] + g[t][j])
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
memset(g,0x3f,sizeof g);
cin >> n >> m;
for(int i = 0; i < m; i++)
{
int x,y,z;
cin >> x >> y >> z;
g[x][y] = z;
}
int t = dijkstra();
cout << t << endl;
return 0;
}
时间复杂度 O(n^2)
当点数为100000时,用该算法超时
②堆优化版
用小根堆来查找不在S中的距离最短的点
复杂度O(mlogn)
(小根堆的最大为m,修改堆中数O(logn) )
具体实现
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 1e6 + 10;
int e[N],ne[N],h[N],w[N],idx;
int n,m;
int dist[N];
bool st[N];
//邻接表存图
void add(int a,int b,int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dijkstra()
{
//初始化
memset(dist,0x3f3f3f3f,sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII> > heap;
heap.push({0,1}); //将起点加入堆,pii第一个数代表距离起点的距离,第二个代表序号,这样可以使小根堆按照距离排序
//影响size的在于push操作,每次push都是加入距离最短的点,是比在遍历边发生时,最多等于
while(heap.size())
{
auto t = heap.top();
heap.pop();
int distance = t.first, ver = t.second;
//对于同一个点的多个距离,只有最短距离是有用的,距离最短的弹出后其余的距离无用,属于冗余,直接跳过即可。
if(st[ver]) continue;
st[ver] = true;
for(int i = h[ver]; i != -1; i = ne[i])
{
//w[i]中i代表idx,w[i]表示j到ver的权重
int j = e[i];
//distance == dist[ver]
if(dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
memset(h,-1,sizeof h);
cin >> n >> m;
while(m--)
{
int x,y,z;
cin >> x >> y >> z;
add(x,y,z);
}
cout << dijkstra();
return 0;
}