题目描述
一台新机器,第4年可以生产一台机器,以后每一年生产1台。 生产出来的新机器第4年又可以生产一台机器,后续每年可以生产1台。
现在有一台新机器,求第n年总共有多少台机器。 计算结果对109+7取模。
基本思路
这种递推的通常会考虑动态规划,因此需要找出递推公式。
每个机器前三年不产生新机器,之后每年产生一个,是非线性的。正向考虑的话十分复杂。
不妨这样考虑:
设第k年生产的机器生日为k, 当前年份为n;
则: 当n - 3 > k时, 产生新机器。
那么,只要我们知道所有年龄大于3的机器数量,也就知道了今年新机器的数量
即 numOfThisYear = num[1] + num[2] + .... + num[n - 3];
实现
ublic static int solve (int n) {
if (n < 4) return 1;
int []sum = new int[n + 1];
sum[1] = sum[2] = sum[3] = 1;
for (int i = 4; i <= n; i++) {
sum[i] = (sum[i - 1] + sum[i - 3]) % 1000000007;
}
return sum[n];
}
优化
不难发现,用到的数据只有最近的4个,所以没必要保存所有的数据,因此采用双端队列来优化内存占用
public static int solve (int n) {
if (n < 4) return 1;
Deque<Integer> queue = new LinkedList<>(Arrays.asList(1, 1, 1));
for (int i = 4; i <= n; i++) {
int e = (queue.getFirst() + queue.getLast()) % 1000000007;
queue.add(e);
queue.removeFirst();
}
return queue.getLast();
}