引言
时间序列数据广泛存在于金融、医疗、能源、物联网等诸多领域,其分析与建模已成为机器学习的关键分支。Aeon 是一个专注于时间序列机器学习的开源 Python 工具库,覆盖从数据预处理到高级建模的完整流程,致力于为研究者与开发者提供高效统一的工作框架。
Aeon 脱胎于 sktime,由八位核心开发者于 2022 年共同创建。其最新版本 v1.1.0(截至 2025 年)进一步引入了先进算法与性能优化,迅速成长为时间序列分析领域的重要工具。
本文将全面介绍 Aeon 的功能特性、安装与配置、核心模块、典型应用场景、性能与局限分析,以及未来发展方向,旨在帮助读者系统掌握 Aeon 的使用方法与最佳实践。文章结构如下:
- Aeon 概述
- 安装与环境配置
- 核心功能详解
- 应用案例分享
- 性能与局限性分析
- 未来发展方向
- 结语
1. Aeon 概述
Aeon 是一个专为时间序列机器学习任务设计的 Python 工具包,涵盖分类、回归、聚类、预测与异常检测等核心任务。其目标是在统一 API 接口下提供先进算法的高效实现,并与 scikit-learn、sktime 等主流库保持良好兼容性。通过 Numba 的加速机制,Aeon 可在保证灵活性的同时提升计算效率。
1.1 为什么选择 Aeon?
时间序列数据具有时间依赖性、非平稳性以及可能的多变量结构,传统的机器学习库(如 scikit-learn)在处理此类问题时显得力不从心。Aeon 提供了如下关键优势:
- 全面的算法支持:从传统模型(如 ARIMA)到深度学习方法(如 InceptionTime),再到集成算法(如 HIVE-COTE),覆盖广泛。
- 统一接口设计:基于 scikit-learn 风格的 API,学习成本低,易于集成。
- 高性能实现:核心计算采用 Numba 加速,提升大数据处理能力。
- 模块化架构:各功能模块高度解耦,支持灵活组合与扩展。
- 社区支持:由活跃的开发团队维护,配有详尽文档与案例教程。
1.2 应用场景
Aeon 可广泛应用于:
- 金融:股价趋势预测、量化交易模型
- 医疗:心电图、脑电图等生理信号异常检测
- 工业:传感器数据分析与故障预测
- 气象与环境:降雨、气温等气象预测模型
- 物联网:边缘设备实时数据分类与响应
2. 安装与配置
2.1 环境要求
Aeon 运行依赖以下 Python 包:
- Python ≥ 3.9
- numpy、scipy(数值计算)
- pandas(数据处理)
- scikit-learn(ML 接口)
- numba(性能优化)
- matplotlib(可视化,非必需)
部分模型(如深度学习方法)可能还需 TensorFlow 或 PyTorch。
2.2 安装方式
基础安装:
pip install aeon
安装所有可选依赖:
pip install aeon[all_extras]
从 GitHub 获取最新开发版本:
git clone https://github.com/aeon-toolkit/aeon.git
cd aeon
pip install .
安装验证:
import aeon
print(aeon.__version__) # 应显示 v1.1.0 或更高
2.3 开发环境推荐配置
使用虚拟环境可避免依赖冲突:
python -m venv aeon_env
source aeon_env/bin/activate # Linux/Mac
aeon_env\Scripts\activate # Windows
pip install aeon
如需深度学习支持,请预先安装相应的 CUDA 与 GPU 驱动。
3. 核心功能详解
Aeon 采用模块化架构,支持多种时间序列任务。以下分别介绍其核心模块与使用方式。
3.1 时间序列分类
以 DTW(动态时间规整)为例:
from aeon.datasets import load_arrow_head
from aeon.classification.distance_based import TimeSeriesKNeighbors
from sklearn.metrics import accuracy_score
X_train, y_train = load_arrow_head(split="train", return_X_y=True)
X_test, y_test = load_arrow_head(split="test", return_X_y=True)
clf = TimeSeriesKNeighbors(distance="dtw", n_neighbors=5)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(f"分类准确率: {accuracy_score(y_test, y_pred):.4f}")
3.2 时间序列聚类
使用 DTW 距离的 K-Means:
from aeon.clustering import TimeSeriesKMeans
import numpy as np
X = np.array([
[[1, 2, 3, 4, 5, 5]],
[[1, 2, 3, 4, 4, 2]],
[[8, 7, 6, 5, 4, 4]]
])
clu = TimeSeriesKMeans(distance="dtw", n_clusters=2)
clu.fit(X)
print("聚类标签:", clu.labels_)
3.3 时间序列预测
使用 NaiveForecaster:
from aeon.forecasting.naive import NaiveForecaster
from aeon.datasets import load_airline
from aeon.utils.plotting import plot_series
y = load_airline()
forecaster = NaiveForecaster(strategy="last")
forecaster.fit(y)
y_pred = forecaster.predict(fh=list(range(1, 13)))
plot_series(y, y_pred, labels=["实际", "预测"])
3.4 异常检测
使用 Isolation Forest:
from aeon.anomaly_detection import IsolationForestAD
from aeon.datasets import load_italy_power
X, _ = load_italy_power(return_X_y=True)
ad = IsolationForestAD()
ad.fit(X)
print("异常点索引:", np.where(ad.predict(X) == 1)[0])
3.5 数据预处理
线性去趋势:
from aeon.transformations.series import Detrend
X = np.array([[1, 2, 3, 4, 5, 6]])
transformer = Detrend()
print("去趋势后的数据:", transformer.fit_transform(X))
4. 应用案例分享
4.1 案例一:股票趋势分类
from aeon.datasets import load_basic_motions
from aeon.classification.interval_based import TimeSeriesForestClassifier
from sklearn.metrics import classification_report
X_train, y_train = load_basic_motions(split="train", return_X_y=True)
X_test, y_test = load_basic_motions(split="test", return_X_y=True)
clf = TimeSeriesForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
print(classification_report(y_test, clf.predict(X_test)))
4.2 案例二:能源消耗预测
from aeon.forecasting.arima import ARIMA
from aeon.datasets import load_shampoo_sales
from aeon.utils.plotting import plot_series
y = load_shampoo_sales()
forecaster = ARIMA(order=(1, 1, 0))
forecaster.fit(y)
y_pred = forecaster.predict(fh=list(range(1, 13)))
plot_series(y, y_pred, labels=["实际", "预测"])
5. 性能与局限性分析
5.1 性能优势
- 使用 Numba 加速数值计算,显著提升训练速度
- 支持大规模、多变量时间序列任务
- 与 pandas、scikit-learn 等库无缝集成
在中等规模数据集(<1 万条序列)上性能优异,但处理超大规模数据时,可能需要结合 Dask 等并行计算框架。
5.2 主要局限
- 实验性模块:部分深度学习算法尚处于实验阶段
- 文档不足:高级功能教程较少,上手成本稍高
- GPU 依赖:训练深度模型时需 GPU 加持
- 社区较小:相较于 scikit-learn,响应时间较慢
6. 未来发展方向
Aeon 未来的发展可能聚焦于:
- 增强深度学习支持:提升模型稳定性,丰富使用文档
- 引入分布式计算支持:适配 Spark/Dask 以处理海量数据
- AutoML 支持:集成自动模型选择与调参模块
- 生态整合:与 PyTorch、Qiskit 等框架无缝衔接,拓展量子时间序列建模能力
- 社区发展:通过文档完善、社区活动激励更多贡献者加入
7. 结语
Aeon 是一个现代化、高效且灵活的时间序列机器学习工具包。凭借其统一接口、强大算法支持与良好扩展性,Aeon 成为学术研究与工业应用的理想选择。希望通过本文介绍,读者能够快速掌握 Aeon 的使用方法,并在自己的项目中灵活运用。