
机器学习算法与实战
文章平均质量分 64
以机器学习算法为基础,进行人工只能训练,解决数据集和模型问题。
萧鼎
爱好:王者荣耀,人工智能;职业:爬虫工程师,深度学习工程师,算法工程师。
展开
-
MoneyPrinterTurbo:AI驱动的全自动高清短视频生成框架
MoneyPrinterTurbo 是由开发者harry0703创建的开源短视频生成框架。该项目可以通过关键词输入,自动生成视频文案、选择合适的视频素材、合成语音配音、添加字幕与背景音乐,最终输出高质量的高清短视频。全自动化:从文案到最终视频,整个流程完全由AI驱动,无需人工干预。多种视频格式支持:支持 9:16(竖屏)、16:9(横屏)等主流视频格式。智能语音合成:支持多种TTS(文本转语音)引擎,包括OpenAI TTS、微软Azure TTS等。智能字幕生成。原创 2025-02-26 10:04:57 · 776 阅读 · 0 评论 -
智能自动化新纪元:AI与UiPath RPA的协同应用场景与技术实践
AI与RPA的融合并非简单的技术叠加,而是通过重新设计流程逻辑释放协同效应。借助UiPath的开放AI生态,开发者可以快速构建“感知-决策-执行”闭环,推动自动化从“代替手脚”向“增强大脑”演进。随着多模态大模型(如GPT-4)的普及,未来的RPA或将具备更接近人类的复杂问题处理能力。原创 2025-02-22 11:07:47 · 1024 阅读 · 0 评论 -
TextBlob:简单高效的自然语言处理工具
是一个简单但功能强大的 NLP 库,非常适合快速原型开发和基础文本分析任务。它的直观 API 和开箱即用的功能让 NLP 任务变得轻松易行。的自然语言处理库,以简单易用著称。它提供了直观的 API,支持文本分析、情感分析、拼写纠正等常见任务,非常适合快速原型开发和学习。只需几行代码即可完成复杂的 NLP 任务,适合初学者快速上手。无需复杂配置,直接加载语言资源即可运行。从分词、词性标注到情感分析、翻译,之上,集成了它们的强大功能。提供了一整套文本处理工具。内置情感分析功能,返回。以下示例展示如何结合。原创 2024-12-01 17:45:32 · 884 阅读 · 0 评论 -
Gensim:高效的主题建模与文本相似度工具
是一个用于主题建模、文档相似度计算和自然语言处理的 Python 库。它以内存效率和处理大规模语料库的能力闻名,是学术研究和生产环境的强大工具。是一个强大、灵活的 NLP 工具,适合处理主题建模、文本相似度和大规模语料库处理等任务。通过本文的介绍,您可以快速掌握 Gensim 的基础功能,并在项目中应用。它支持主流的主题建模算法,如 LDA(Latent Dirichlet Allocation)和 LSI(Latent Semantic Indexing)。原创 2024-12-01 17:43:18 · 432 阅读 · 0 评论 -
spaCy 入门与实战:强大的自然语言处理库
是一个强大且实用的 NLP 工具,既适合快速原型开发,也适合生产环境的大规模文本处理。是一个现代化、工业级的自然语言处理(NLP)库,以高效、易用和功能丰富著称。可以与深度学习框架(如 TensorFlow 和 PyTorch)无缝集成,适合构建复杂的自定义模型。提供高效的分词工具,可以识别词性(POS)和句法依存关系(Dependency Parsing)。提供了丰富的预训练模型,几行代码即可完成分词、词性标注和实体识别等任务。从基本的文本处理到复杂的依存解析、命名实体识别(NER),原创 2024-12-01 17:40:48 · 1312 阅读 · 0 评论 -
深入理解 Flax:JAX 生态中的深度学习框架
它旨在为研究人员和开发者提供现代化的工具,用于构建高效的机器学习模型,同时保留 JAX 强大的底层特性。Flax 的灵活性和性能为研究和生产中的深度学习开发提供了全新的可能性。通过与 JAX 的完美结合,Flax 在分布式训练、复杂模型设计和性能优化方面展示了其独特的优势。在状态丰富的模型中,确保正确初始化和更新状态。Flax 提供简单直观的 API,同时保留底层 JAX 的透明性,允许开发者深入优化代码性能。以下是 Flax 的基本用法示例,我们将构建一个简单的 MLP(多层感知器)模型。原创 2024-12-01 17:37:53 · 1161 阅读 · 0 评论 -
深入探索Flax:一个用于构建神经网络的灵活和高效库
Flax的神经网络模块是通过继承类来定义的。在Flax中,每个网络的构建都需要在apply方法中定义前向传播逻辑。import jax# 定义网络层# 前向传播:输入通过两层全连接层return x# 初始化模型# 初始化输入数据x = jnp.ones((1, 28 * 28)) # 假设输入是28x28像素的图像# 初始化模型参数。原创 2024-11-29 11:51:38 · 1330 阅读 · 0 评论 -
【python】如何制作一个双目摄像头定位系统
双目视觉系统通过两个相机(即左右两个摄像头)获取场景的两个视图,进而通过比对这两个视图中的像素点差异,计算出深度信息。通过这种方式,我们能够获得场景的三维重建。立体匹配(Stereo Matching):从左右相机的图像中找到相同的物体点,计算它们的视差。视差到深度转换:根据视差和相机的基线长度,计算物体到相机的实际距离。三维重建:通过深度信息恢复出物体的三维坐标。双目摄像头定位系统通过模拟人眼的原理,能够为各种应用提供精准的深度感知和三维重建能力。原创 2024-11-29 11:48:18 · 2589 阅读 · 1 评论 -
CatBoost 库包介绍与实战
CatBoost 是一个功能强大且高效的梯度提升框架,特别适用于处理包含大量类别特征的数据集。它不仅能够自动处理类别特征和缺失值,还能够提供高效的训练速度和较高的准确性。在实际应用中,CatBoost 可用于分类、回归、排序等多种任务,并支持 GPU 加速和分布式训练,极大提升了大规模数据的处理效率。通过这篇博客,我们详细介绍了如何使用 CatBoost 进行模型训练、评估和调优,并探讨了在实际应用中的一些常见问题及其解决方案。原创 2024-11-27 21:11:02 · 1348 阅读 · 0 评论 -
LightGBM 库包介绍与实战
LightGBM 是一个强大且高效的机器学习库,它的高效性、扩展性以及对大规模数据的支持使其在实际问题中表现出色。通过灵活的参数调优和内置的特征重要性分析,LightGBM 可以帮助我们构建出高效、准确的预测模型。在实际应用中,适当调整超参数、使用分布式训练以及利用 GPU 加速,能够显著提升模型的训练效率和准确性。希望通过这篇博客,你能对 LightGBM 有一个更加深入的了解,并能够在实际项目中灵活运用它。如果你有任何问题或需要进一步了解的内容,欢迎与我交流!原创 2024-11-27 21:08:15 · 1119 阅读 · 0 评论 -
XGBoost库介绍:提升机器学习模型的性能
XGBoost(eXtreme Gradient Boosting)应运而生,它是一种高效的梯度提升算法,常常在许多竞赛和实际项目中取得非常出色的表现。XGBoost是一个高效、灵活且强大的机器学习库,广泛应用于各种机器学习任务中,尤其是在数据集较大、计算要求较高的情况下。简要来说,梯度提升算法的核心思想是通过逐步训练多个弱分类器(通常是决策树),并将每个新模型的预测误差用于指导下一个模型的训练,从而提升整体预测能力。:XGBoost提供了交叉验证的接口,可以帮助评估不同参数的表现,并选择最合适的模型。原创 2024-11-26 14:19:43 · 1339 阅读 · 0 评论 -
Python+LangChain:构建智能对话和工具链的终极指南
它将 LLM 的强大能力与外部工具、记忆机制、数据存储和用户接口相结合,为开发者提供了一种高效的方法来实现复杂的 AI 应用。LangChain 是一个强大的工具,帮助开发者将语言模型的潜力最大化。随着大语言模型(LLM)的普及,如 OpenAI 的 GPT 系列和 Hugging Face 的 Transformers,如何将这些强大的模型与实际应用场景结合变得越来越重要。通过本文的示例代码,你可以快速掌握 LangChain 的基础用法,并尝试将其应用到自己的项目中。原创 2024-11-22 10:28:00 · 839 阅读 · 0 评论 -
解锁交互式 AI 应用:使用 Gradio 快速构建用户界面
Gradio 是一个开源的 Python 库,允许你快速创建基于浏览器的交互界面。无论是图像处理模型、文本生成工具,还是数据分析功能,Gradio 都能将其转化为一个可视化界面,方便他人使用。它让 AI 应用的开发和展示变得前所未有的简单,大幅减少了创建用户界面的时间成本。本篇博客将带你全面了解 Gradio 的核心功能,并通过示例代码展示如何快速构建自己的 AI 演示界面。在项目的早期阶段,用 Gradio 构建原型非常高效,无需构建完整的前端。生成一个公开的网络地址,便于他人访问。原创 2024-11-22 10:22:42 · 917 阅读 · 0 评论 -
从繁琐到优雅:用 PyTorch Lightning 简化深度学习项目开发
在深度学习开发中,尤其是使用 PyTorch 时,我们常常需要编写大量样板代码来管理训练循环、验证流程和模型保存等任务。PyTorch Lightning 作为 PyTorch 的高级封装库,帮助开发者专注于研究核心逻辑,极大地提升开发效率和代码的可维护性。为了更好地展示 PyTorch Lightning 的优势,我们以一个实际案例为例:构建一个用于分类任务的深度学习模型,包括数据预处理、训练模型和最终的测试部署。是一个开源库,旨在简化 PyTorch 代码结构,同时提供强大的训练工具。原创 2024-11-21 10:52:19 · 2079 阅读 · 0 评论 -
【Python】使用 Typer 打造优雅的命令行工具:更简单、更强大、更 Pythonic
在 Python 的世界中,开发命令行工具一直是一个重要的应用场景。从简单的脚本到复杂的工具,Python 提供了许多库(如 argparse、click)来帮助开发者构建命令行界面。然而,这些库要么过于基础,需要编写大量代码,要么过于复杂,不够直观。Typer 的出现彻底改变了这一现状。它基于 Python 的类型提示(type hints),让你可以用最少的代码构建强大的命令行工具。Typer 是一个现代化的命令行工具构建库,由 FastAPI 的作者 Sebastián Ramírez 开发。它的设计原创 2024-11-20 12:30:11 · 1172 阅读 · 0 评论 -
探索PyCaret:一个简化机器学习的全栈库
从上表可以看出,PyCaret 的优势在于其低代码和自动化特性,尤其适合数据科学初学者或对时间敏感的项目。幸运的是,PyCaret 提供了一个简单、高效且功能强大的解决方案。PyCaret 的核心理念是“低代码”,通过几行代码即可实现模型选择、比较、调优、解释等功能。其强大的功能和简洁的API使其成为一个极具吸引力的替代方案,尤其是对更复杂的工具(如 Scikit-learn)的简化。如果你正在寻找一种快速开发机器学习模型的方式,PyCaret 无疑是一个值得尝试的工具。,快速比较和优化模型,节省时间。原创 2024-11-20 12:25:18 · 792 阅读 · 0 评论 -
Python库进阶:高效文件读取与数据处理的PyArrow教程
PyArrow 是一个功能强大的库,提供了高效的文件读取、数据转换和处理能力。在处理大数据时,PyArrow 在性能和效率上都有显著优势,特别是在与列式存储格式(如 Parquet 和 Feather)结合使用时,能够显著提升数据加载速度。通过本篇教程,我们了解了 PyArrow 支持的多种文件格式、如何进行数据筛选和转换,以及如何优化性能来处理大规模数据。对于需要高效处理大规模数据的 Python 开发者来说,PyArrow 是一个非常值得学习和使用的工具。原创 2024-11-14 16:52:43 · 1794 阅读 · 0 评论 -
【python】机器学习调参与自动化:使用Hyperopt优化你的模型
Hyperopt 是一个 Python 库,用于优化和自动化机器学习模型的超参数调节。它支持多种优化算法,最常用的是贝叶斯优化(Bayesian Optimization)、随机搜索(Random Search)以及遗传算法(Genetic Algorithm)。Hyperopt 不仅适用于机器学习任务,也可以广泛应用于其他需要优化的场景。空间(Space):定义超参数搜索空间。通常情况下,我们通过指定每个超参数的取值范围来定义一个空间。目标函数(Objective Function)原创 2024-11-14 16:47:38 · 1608 阅读 · 0 评论 -
【Python】高效的时间序列分析:Statsmodels库实战解析
本文演示了如何使用库进行时间序列分析,从数据探索到平稳性检测、趋势分解,再到ARIMA和SARIMA模型的构建和预测。是一个功能强大且易用的时间序列分析工具,可以帮助我们高效完成各种时间序列分析任务。希望本文能为您提供一个清晰的入门指南,助您在时间序列数据分析的道路上更进一步!原创 2024-11-08 16:18:53 · 1217 阅读 · 0 评论 -
【Python】轻松实现机器翻译:Transformers库使用教程
在某些专业领域(例如法律、医学等),需要使用特定的词汇。Transformers支持加载自定义的词汇表来增强翻译的专业性。使用Transformers库进行机器翻译相对简单且有效,特别适合在项目中快速搭建和测试翻译功能。通过本文的教程,您可以轻松上手机器翻译的基本实现,并理解如何对生成的翻译进行优化。未来,随着自然语言处理技术的不断发展,机器翻译的应用前景会更为广阔。希望本文能帮助您在项目中实现更流畅的翻译体验!原创 2024-11-08 16:16:49 · 2662 阅读 · 0 评论 -
Python中的TensorFlow与Keras:深度学习模型构建与训练
TensorFlow是由Google开发的一个开源机器学习框架,特别擅长于深度学习和神经网络的训练。它支持多种平台,既可以在服务器端进行大规模的训练,也可以在移动设备上部署轻量级模型。TensorFlow的核心功能是提供一个强大的计算图(computation graph)来执行数学运算,它支持自动微分(autograd),能够自动计算梯度,这对优化算法非常重要。通过本文的学习,你已经掌握了如何使用TensorFlow与Keras进行深度学习模型的构建与训练。原创 2024-11-06 10:32:40 · 1232 阅读 · 0 评论 -
langchain-chatchat指定一个或多个文件回答,不允许回答内容有其他文件内容,即屏蔽其他文件内容
1.找到langchain-chatchat中的knowledge_base_chat.py。4.全部加上后,运行即可指定一个或多个文件进行知识库回答。原创 2024-04-09 14:05:29 · 407 阅读 · 0 评论 -
langchain-chatchat加载Azure Open AI
1.找到knowledge_base_chat.py文件中的get_ChatOpenAI函数。6.直接python startup.py -a运行即可调用Azure Open AI。(3)修改openai-api,在model_config.py文件加上以下代码。(1)创建.env文件,里面放入自己在微软申请的Azure Open AI。(2)加载.env文件,在model_config.py文件加上以下代码。4.找到model_config.py文件。原创 2024-04-09 13:55:29 · 786 阅读 · 0 评论 -
Stream流式输出:一种高效的数据处理方式
Stream流式输出作为一种新型的数据处理方式,能够实时处理数据,提高数据处理效率,因此受到了广泛的关注和应用。数据流的处理是在流动的过程中完成的,因此能够实时地处理数据,提高了数据处理效率。:在使用流式响应时,要确保及时释放资源。例如,在电商平台上,可以根据用户的浏览和购买行为,推荐相关的商品和活动。同时,由于数据处理是在流动的过程中完成的,可以避免数据的重复传输和处理。:物联网设备会产生大量的实时数据,通过Stream流式输出可以对这些数据进行实时处理和分析,从而更好地了解设备的运行状况和环境情况。原创 2024-02-01 15:28:13 · 5258 阅读 · 0 评论 -
debain12.0系统安装cuda和cudnn,并且可以调用算力
2.sh cuda_11.7.0_515.43.04_linux.run --override命令安装cuda时–override命令会让你避免安装不上,同时不要连带安装驱动,因为驱动太大下载不下来会导致失败。1.重启电脑后会因为内核主动升级问题,nvidia-smi命令会失效,解决方法是重启电脑时使用旧版本内核启动方式启动。Anaconda3软件:2023.09版。NVIDIA驱动:535.146.02。3.使用以下命令去测试算力能否调用。所有软件均可在网络上下载,如下图。显示True时算力可调用。原创 2023-12-20 10:12:38 · 1588 阅读 · 0 评论 -
46行代码实现免费语音识别,用过的人当场拍桌子大叫一声“好”!
10.继续定义一个main函数,该函数的功能是加载base语音模型(提示:该语音模型会自动下载),将实时语音以中文形式翻译成文字输出。1.在做一些语音项目的时候,每次都要调用API,百度的或者是科大讯飞的,要钱贵不说,识别效果还差的要命,此事苦其久也。3.安装pyaudio库包,该库包是用来进行实时语音录制和保存的。9.将保存在列表中的声音数据以二进制的形式保存在一个wav声音文件中。5.新建一个.py文件,比如"语音识别.py"文件。11.最后,写一个运行入口,运行main函数。原创 2023-09-18 13:38:48 · 3999 阅读 · 20 评论 -
whisper 语音识别项目部署
配置只需要解压后将文件里面的bin路径放入系统环境变量Path中即可。7.可以实时录音并且语音转中文的代码编写(使用cpu运行)8.可以实时录音并且语音转中文的代码编写(使用gpu运行)2.使用conda命令创建python3.8环境。4.安装cuda10.0的PyTorch环境。5.使用命令安装whisper库包。6.打开pycharm软件编写代码。3.进入whisper虚拟环境。6.安装和配置ffmpeg软件。1.安装anaconda软件。7.安装cuda软件。9.展示实时翻译结果。原创 2023-08-24 15:31:58 · 3689 阅读 · 5 评论 -
ChatGpt开源项目完美运行配置(ChatGml2)
本篇文章内容是安装和配置chatgpt项目所需的软件以及chatgpt项目所需要的python库包,同时编写python代码来完成chatgpt项目的人机对话功能。所有软件均可使用百度网盘免费获取。原创 2023-08-17 15:02:52 · 2201 阅读 · 0 评论 -
人脸识别速度超高识别度超高项目,可实时进行检测,一看就会!
1.本项目属于pytorch-facenet项目,核心代码是facenet算法,经过1周的代码修改,可以进行入库和识别的连续操作,经过测试,识别效果很好,在GPU环境中可以进行实时摄像头的识别,同时项目将放在百度网盘中供大家免费下载,技术无价,大家一起学习改进!2.软件环境大家需要anaconda+pycharm+cuda10.0,这是我的GPU环境。python库包环境如下,大家根据下面的库包下载相对应的库,主要的两个库包是torch=1.2.0和torchvision==0.4.0。3.主要项目结原创 2023-01-09 10:45:04 · 1279 阅读 · 1 评论 -
人脸微笑识别,满足你鉴别女神的微笑
人脸微笑识别,速度快,识别准,你值得拥有。原创 2022-06-06 17:19:56 · 820 阅读 · 4 评论 -
5行代码进行语音合成输出
1.下载pyttsx3pip install pyttsx32.第一行代码是导入pyttsx3语音合成库import pyttsx33.第二行代码,pyttsx3.init(),表示调用pyttsx3语音合成库的初始化类。e = pyttsx3.init()4.第三行表示等待运行,等待语音合成e.runAndWait()5.第四行表示读出语音合成的声音e.say('说的话')6.第五行表示结束等待e.runAndWait()7.完整代码展示import pyttsx3原创 2022-05-25 09:41:32 · 759 阅读 · 0 评论 -
在树莓派中写入科大讯飞语音转文字识别程序
在树莓派桌面里新建一个xunfei_zhuan.py文件,然后打开文件,然后使用默认软件编程点击terminal,在里面使用以下命令安装cffi==1.12.3库pip3 install cffi==1.12.3使用以下命令安装gevent==1.4.0库pip3 install gevent==1.4.0使用以下命令安装greenlet==0.4.15库pip3 install greenlet==0.4.15使用以下命令安装pycparser==2.19库pip3 ins原创 2022-05-08 10:11:12 · 3013 阅读 · 8 评论 -
python编写的语音识别+机器人对话+文字播报一体
1.语音识别这里用到了百度api的语音识别,目前开源的语音识别成文字的效果都很差,百度api的语音识别效果还可以。2.机器人对话,这里用到了青云客机器人对话,通过爬虫获取对话的内容,机器人对话效果一般,没有图灵机器人灵活,但是目前免费,这个是很好的优点。3.文字播报文字转成mp3格式的音频保存,然后使用pygame播放出保存的mp3格式的语音4.完整代码呈现from aip import AipSpeechimport pyaudioimport pygameimport ffmpy原创 2022-02-14 10:17:23 · 1592 阅读 · 0 评论 -
人脸识别之目标追踪识别
人脸识别之目标追踪识别1.开发工具Python版本:Anaconda 3.8环境开发软件:Pycharm社区版相关模块:sys模块,pypinyin模块,os模块,opencv-contrib-python 模块,opencv-python模块。模型:cv2中自带的人脸识别模型2.环境搭建安装Anaconda并将路径添加到环境变量,创建python虚拟环境,安装Pycharm并将路径添加到环境变量,使用pip安装需要的相关模块即可。3.原理介绍目标追踪的人脸识别是改进后的人脸识别算法,通过原创 2022-01-24 09:46:00 · 15757 阅读 · 4 评论 -
颜色和移动物体识别系统
颜色和移动物体识别系统1.开发工具Python版本:Anaconda 的python环境3.8版本开发软件:Pycharm社区版识别模型:深度学习模型,普通学习模型相关模块:opencv-python=3.4.8.29模块2.环境搭建安装Anaconda并将路径添加到环境变量,安装Pycharm并将路径添加到环境变量,使用pip安装需要的相关模块即可。3.程序流程一、颜色识别系统1)打开pycharm,创建一个文件夹和一个.py文件2)导入两个库,cv2和numpy库3)设置绿色原创 2022-01-17 10:10:55 · 4154 阅读 · 0 评论 -
yolo3-pytorch训练摩托车模型并且识别
1.使用cuda10.0环境,检测有无cuda10.0环境,使用代码nvcc -V,出现以下图情况则为环境配置已好2.准备下载yolo3-pytorch框架:https://download.csdn.net/download/liaoqingjian/740619463.下载所需要的摩托车数据集:https://download.csdn.net/download/liaoqingjian/740206034.将下载好的摩托车xml文件和图片依次放入以下Annotations和JPEGImages原创 2022-01-05 14:49:14 · 2432 阅读 · 0 评论 -
左右眼识别系统
1.开发工具Python版本:Anaconda 的python环境3.8版本开发软件:Pycharm社区版识别模型:普通学习模型相关模块:opencv-python=3.4.8.29模块2.环境搭建安装Anaconda并将路径添加到环境变量,安装Pycharm并将路径添加到环境变量,使用pip安装需要的相关模块即可。3.程序流程1)打开pycharm软件,新建一个文件夹和一个.py文件2)导入cv2库,使用import cv23)读取视频的路径并赋予变量4)导入识别左眼和右眼的类原创 2021-12-30 13:02:17 · 575 阅读 · 1 评论 -
运动物体的边缘检测
运动物体的边缘检测1.开发工具Python版本:Anaconda 的python环境3.8版本开发软件:Pycharm社区版识别模型:普通学习模型相关模块:Anaconda自带模块,opencv-python=3.4.8.29模块2.环境搭建安装Anaconda并将路径添加到环境变量,安装Pycharm并将路径添加到环境变量,使用pip安装需要的相关模块即可。3.原理介绍利用固定摄像头拍摄的实时视频,框出移动物体的轮廓(即FrogEyes蛙眼移动物体侦测),首先将摄像头里的想要识别的区域圈原创 2021-12-14 16:08:56 · 4376 阅读 · 4 评论 -
2021年11月29日yolov3害虫检测
1.pytorch-yolov3框架下载,在github和gitee中都可以下2.下载相关的python库3.环境是cuda10.1,torch是1.2.0,torchvision是0.4.04.害虫数据集,地址:5.修改部分6.训练好模型后加上我写好的qt界面测试,结果如下...原创 2021-11-30 09:36:54 · 3610 阅读 · 0 评论 -
2021年11月18日pyqt界面设计+昆虫识别
一.使用Designer软件制作界面使用命令下载pyqt5和pyqt5-toolspip install pyqt5pip install pyqt5-tools软件在pyqt5-tools库中打开pyqt5-tools,进入.\pyqt5_tools\Qt\plugins\platforms路径复制里面所有文件到路径pyqt5_tools\Qt\bin\platforms中进入pyqt5_tools\Qt\bin路径中,打开designer软件设计一个简单的昆虫识别界面二.使用y原创 2021-11-18 16:14:28 · 1153 阅读 · 1 评论