乘方的定义
求相同因数的积叫做乘方。乘方运算的结果叫幂。
当 a n a^n an 看作 a 的 n 次乘方的结果时,也可读作“a 的 n 次幂”或“ a 的 n 次方”。其中,a 叫做底数(base number),n 叫做指数(exponent)。
运算法则
更多乘方的运算法则,参考百度百科-乘方
正分数指数幂法则
a m n a^{\frac{m}{n}} anm = a m n \sqrt[n]{a^m} nam,a 的 n 分之 m 次方等于 a 的 m 次方开 n 次方,即等于 a 的 m 次方 的 n 次方根。
负分数指数幂法则
a − m n a^{-\frac{m}{n}} a−nm = 1 a m n \frac{1}{\sqrt[n]{a^m}} nam1
注:m,n ∈ N+,n > 1
同底数幂法则
同底数幂相乘,底数不变,指数相加。
a
m
a^m
am x
a
n
a^n
an =
a
(
m
+
n
)
a^{(m+n)}
a(m+n)
同底数幂相除,底数不变,指数相减。
a m a^m am ÷ a n a^n an = a ( m − n ) a^{(m-n)} a(m−n)
负整数指数幂法则
a − k a^{-k} a−k = 1 a k \frac{1}{a^k} ak1,其中,a ≠ 0,k ∈ N* (k 为正整数)