题目描述:给定二维0,1串的矩阵,找出最大的正方形的只有1串的区域。
例如:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
答案为4.
解题思路:动态规划。
dp[i][j]
是以(i,j)为右下角顶点的最大正方形的边长。
矩阵从左到右、从上到下进行扫描,当发现:
1. (i, j), (i-1, j), (i, j-1)
三个位置都为1的时候,(i, j)这个值能够与这个值左边上边的某个大小的区域组成一个矩阵。例如:
1 0 1 0 0
1 0 1 1 1
1 1 1 1
接下来扫描(2, 4),发现(i, j), (i-1, j), (i, j-1)
三个位置都为1,那么(i, j)这个值能够与另外五个1构成一个矩阵。
但是题目要求的是正方形的大小,因此还要找出dp(i-1, j-1), dp(i-1, j), dp(i, j-1)
中的最小值min
,这个最小值是以这三个值为右下角顶点的三个正方形中的最小边长,而扫描(i, j)这个值我们发现它能够补成一个更大的矩阵,因此这个补上之后最小正方形的边长必定能够增加1,因此令dp(i, j) = min + 1
.
之所以要找dp(i-1, j-1), dp(i-1, j), dp(i, j-1)
中的最小值,是因为补上的是一个矩阵,而矩阵的宽限制了正方形的边长。
2. (i, j), (i-1, j), (i, j-1)
三个位置有一个为0时,肯定无法补成一个矩形,因此dp(i, j) = 0
.
扫描过程中,变量res
纪录了所找到的最大的正方形的边长。
最终代码如下:
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size();
if (m == 0) return 0;
int n = matrix[0].size();
if (n == 0) return 0;
int res = 0;
vector<vector<int> > dp(m, vector<int>(n, 0));
// 处理边界的情况:找到1就说明找到一个边长为1的矩阵。
for (int i = 0; i < n; ++i) {
dp[0][i] = matrix[0][i] - 48;
if (dp[0][i]) res = 1;
}
for (int i = 1; i < m; ++i) {
dp[i][0] = matrix[i][0] - 48;
if (dp[i][0]) res = 1;
}
// 主要逻辑
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (matrix[i][j] == '1' && matrix[i-1][j] == '1' && matrix[i][j-1] == '1') {
int t = min(dp[i-1][j-1], dp[i-1][j]);
t = min(t, dp[i][j-1]);
dp[i][j] = t + 1;
if (res < dp[i][j]) res = dp[i][j];
} else {
dp[i][j] = matrix[i][j] - 48;
}
}
}
return res * res;
}
};