AI绘画:Stable Diffusion WebUI与ComfyUI该怎么选?一文对比优缺点

AiBot:实战测评各类Ai工具、RPA流程自动化应用!一起研学习!看了少走弯路!

AiBot:实战测评各类Ai工具、RPA流程自动化应用!一起研学习!看了少走弯路!

AiBot:实战测评各类Ai工具、RPA流程自动化应用!一起研学习!看了少走弯路!

在当今数字化的时代,AI绘画也正以惊人的速度崛起,并向各行各业渗透。但是,铺天盖地的AI行业资讯,隔一段就会出现的“颠覆性”技术突破,看都看不过来的AI工具…让人眼花缭乱,并且逐渐焦虑。今天AiBot就来和朋友们一起聊一聊AI绘画两大主流工具:Stable Diffusion WebUI VS ComfyUI。看看在AI绘画上各自的优缺点和特性。

一、AI绘画工具的选择

进行 AI 绘画学习,很多人直接选择了开源免费的Stable Diffusion WebUI(简称SD)

基于SD图像生成模型而衍生的web图形界面工具有很多,但目前运用比较多的主要是两种工具:一是大名鼎鼎的WebUI,另一个是从去年下半年开始火起来的ComfyUI

WebUI界面 VS ComfyUI界面:

Stable Diffusion WebUI

Stable Diffusion WebUI

ComfyUI

ComfyUI

那么这两者之间有什么区别呢?我们又应该如何选择呢?

先说结论,我建议初学者从WebUI开始入手,熟悉后再考虑转向ComfyUI,以充分利用AI工作流程,实现效率的最大化

**二、**WebUI和ComfyUI特性对比

WebUI和ComfyUI两者本质上都源自SD进行开发的,但在实际应用上,它们各自展现出了独特的形态。接下来,为大家详细介绍WebUI与ComfyUI的优缺点以及使用对比

WebUI和ComfyUI特性对比

WebUI和ComfyUI特性对比

三、WebUI的优缺点

WebUI的优点:WebUI具有整合好的可视化界面,用户可以看到非常清晰的操作界面,直接点击选择参数后就可以出图,操作简单,使用方便,也非常直观。

WebUI的优缺点

WebUI的优缺点

WebUI的优缺点

WebUI的优缺点

简单来说,WebUI就相当于一台一体机电脑,非常适合初入AI绘画的新手使用,可以迅速上手,轻松理解各项功能。

而且,WebUI已经有了稳定成熟的开源生态,也集成了大量开发好的工具,用户无需费心去寻找,直接就能使用,模型选择和参数设置也足够丰富了,能满足相当大的图片需求。

WebUI的缺点 : WebUI也并非完美无缺,本地部署虽然免费但硬件要求高、占资源;云端部署不占硬件和资源,但不免费;其次,WebUI虽然可以选择已有的参数,但对于想要批量出图的用户来说,局限会比较大,参数一点点不一样就可能导致得不到预期的结果,不能完整复刻工作流。

WebUI的优缺点

WebUI的优缺点

四、ComfUI的优缺点

ComfyUI的优点 : 从2023年下半年开始,AI绘画界出现了一颗新星——ComfyUI。这个工具以其快速、流畅的图像生成能力,以及对低配置设备的友好性,迅速在创作者中流行起来。

如果说WebUI是一台一体机电脑,那么ComfyUI就是一台自由组装的电脑。它使用户能够通过链接不同的块(称为节点)来构建复杂的图像生成工作流程:

ComfUI的优缺点

ComfUI的优缺点

ComfUI的优缺点

ComfUI的优缺点

这些节点可以包括各种任务,如加载检查点模型、输入提示、指定采样器等,根据自己的需求定制工作流。

此外,Comfy不仅是界面,还是强大的后端,可以使用各种大语言模型(包括chatgpt),会代码的也可以自己编写模块或节点满足定制化需求,进行长线、定制化、自动化的专业使用。

ComfUI的优缺点

ComfUI的优缺点

所以,ComfyUI的亮点就是能够批量化生成图像,一键加载大量工作流,让用户轻松实现人像生成、背景替换和图片动画化等功能。

上手难度: +

ComfyUI的缺点 : 由于Comfy拥有众多的插件节点,看起来不直观,需要适应节点式操作习惯,以及较为复杂的操作流程。

其上手难度相对较高,对于初次接触的用户来说,可能会感到有些迷茫和无从下手。

五、WebUI和ComfyUI的对比

ComfyUI提供了非常高的自由度和灵活性,支持定制化工作流,并且可以复用,可以批量出图。

同时对系统配置的要求较低,并且能够加快原始图像的生成速度。然而,由于它拥有众多的插件节点,以及较为复杂的操作流程,学习起来相对困难。

另一方面,WebUI特点是拥有固定的操作界面,使得其易于学习和快速上手。但相比ComfyUI,在性能方面可能稍逊一筹,且在工作流程复制方面存在局限性,用户需在每次操作时手动进行设置。

因此,建议初学者从WebUI开始入手,熟悉后再考虑转向ComfyUI,以充分利用AI工作流程,实现效率的最大化。对于还不会AI绘画、不能熟练使用AI工具的人来说,AiBot小编强烈建议你顺风而行,赶上这一波风口,享受AI带来的红利!

如果你是新手,小编建议先学习Stable Diffusion WebUI !如果你已经熟练使用Stable Diffusion WebUI,可以直接学习ComfyUI !

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 如何在 Linux 系统上运行 Stable Diffusion 要在 Linux 系统上成功运行 Stable Diffusion,可以遵循以下方法和配置说明: #### 1. 安装依赖项 确保系统已安装必要的软件包和库文件。可以通过以下命令完成基本环境准备: ```bash sudo apt update && sudo apt upgrade -y sudo apt install git python3-pip ffmpeg libsm6 libxext6 -y pip3 install --upgrade pip ``` 这些工具包括 Git(用于克隆仓库)、Python 的 Pip 工具以及一些多媒体处理所需的共享库[^1]。 #### 2. 克隆项目代码 通过 `git` 命令获取 Stability AI 提供的官方存储库到本地目录 `/data/stable-diffusion-webui/repositories/` 或其他自定义路径下: ```bash git clone https://github.com/Stability-AI/stablediffusion.git /data/stable-diffusion-webui/repositories/stable-diffusion-stability-ai ``` 如果网络连接不稳定或者速度较慢,则可以择手动下载压缩包并将其放置于目标服务器上的相应位置后再解压[^2]。 #### 3. 下载模型权重文件 接着需要从 Hugging Face 平台拉取预训练好的扩散模型参数文件至指定目录内以便后续加载使用: ```bash wget -P /data/stable-diffusion-webui/models/Stable-diffusion https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors ``` 同样地,在遇到下载失败的情况时也可以采取离线方式先保存好再传入上述地址中去替代在线抓取操作。 #### 4. 启动服务端程序 进入脚本所在的工作区执行启动指令前可能还需要额外调整某些权限设置等问题;最后利用如下命令开启 Web UI 接口界面让客户端能够远程访问控制整个流程: ```bash cd /path/to/stable_diffusion_web_ui/ COMMANDLINE_ARGS="--share --disable-safe-unpickle" REQS_FILE="requirements.txt" ./webui.sh ``` 这里设置了两个重要的项:一个是允许外部链接分享功能方便跨设备协作测试;另一个则是关闭序列化安全性检查机制从而兼容更多类型的输入数据源。 当一切正常完成后应该可以看到类似下面这样的日志输出表明实例已经就绪等待请求到来: ``` Running on local URL: http://0.0.0.0:7860 ... You can now view the app in your browser. ``` 此时打开浏览器前往显示出来的 IP 地址加端口号组合形成的网址即能体验完整的图像生成功能啦! --- ### 技术细节补充 对于具体实现原理方面,《The Illustrated Stable Diffusion一文中提到该算法主要分为以下几个阶段工作流来进行创作过程中的每一步转换动作直至最终产出成果为止[^3]: - **Latent Space Encoding**: 将初始图片编码成低维特征向量表示形式。 - **Diffusion Process**: 应用随机噪声逐步改变原始信号直到接近纯噪音状态结束循环迭代计算。 - **Decoding Stage**: 反过来由高斯分布采样重建回像素级可视化表达结果出来形成新作品展示给用户看。 此过程中涉及到大量矩阵运算张量变换技巧,因此推荐采用 GPU 加速硬件支持以提高效率减少耗时成本开销情况发生几率大大降低提升整体性能表现水平达到最佳效果呈现标准之上满足实际需求场景应用场合广泛适用性强适应范围广覆盖全面无死角全覆盖全领域全方位多角度深层次剖析解读分析总结归纳提炼升华萃取出精华部分展现给大家共同学习进步成长发展前进道路上不断探索求知进取向上攀登高峰勇攀科技巅峰创造奇迹辉煌成就梦想未来无限可能性空间任君驰骋翱翔飞翔自由自在随心所欲尽情挥洒汗水铸就属于自己的传奇故事篇章留下永恒印记铭刻历史长河之中永不磨灭闪耀光芒照亮前行道路指引方向带领后来者沿着前辈们开辟的道路继续奋勇向前迈进开创更加美好的明天迎接灿烂光辉前景展望充满希望的新时代新征程新篇章。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值