[论文解读]2017 TPAMI A Deep Matrix Factorization Method for Learning Attribute Representations

[论文解读]2017 TPAMI A Deep Matrix Factorization Method for Learning Attribute Representations

个人对论文的解读

这是我个人对该论文的一些认识与拙见,如果有错也请大家多包涵并指出来,也欢迎对该文有兴趣的童鞋在底下留言评论,大家一起交流探讨。

论文背景:这是一篇在来自2017 TPAMI的论文,实际上早在13年,该论文的作者就在arXiv与14 ICML上发表了简版论文 A Deep Semi-NMF Model for Learning Hidden Representations,后来TPAMI是在会议论文的基础上扩展的。该文章开源,所有的matlab和python代码的文章补充附录都可以在作者主页找到(但是代码有bug)。

文章创新点

这篇文章主要有几个创新点:

  1. 首创将Semi-NMF扩展成为Deep Semi-NMF,并发现该深度结构可以提取数据的隐藏信息,发现新的数据类别,如下图所示;
    截图自原文
    该图主要是举例了人脸数据通过该深度模型,第一层可以发现其人脸角度信息,第二层可以发现其表情信息,第三层发现其身份信息,而且是通过无监督的方式来聚类获得的。
  2. 结合了监督图正则的方法,将Deep Semi-NMF扩展到带标签监督的Deep WSF。
  3. 受到深度学习的启发,在Deep Semi-NMF与Deep WSF上,作者都加入了激活函数的操作,以提高模型的特征提取能力。
  4. 设计了模型对应的优化策略。

Deep Semi-NMF模型与优化

Chris Ding在2010年提出了半非负矩阵分解Semi-NMF,非负矩阵分解算法(NMF)这里就不做展开,网上的资料都比较多。NMF是将矩阵 X X X 分解为矩阵 Z Z Z H H H 的乘积,用F范数来表示模型 ∥ X − Z H ∥ F 2 \|X-ZH\|_{F}^2 XZHF2,这三个矩阵都有非负的限制。Semi-NMF放宽了非负约束,只将非负限制在矩阵 H H H 上。并说明了Semi-NMF有利于数据聚类的应用。
Deep Semi-NMF的本意是将 H H H 继续做分解
在这里插入图片描述
并用该模型表示
在这里插入图片描述
这个时候就会发现,想要优化这个模型,初始化就变为尤为重要了,所以作者就设计这种深度结构对应的优化策略。分为pre-trained与fine-tune两个环节。pre-trained环节也就是跟Semi-NMF一样,前一层得到的 H H H 作为下一层的 X X X ,以此类推分解,当然每一层都要让其收敛。
然后就轮到fine-tune环节,将偏导置0,参考Semi-NMF的优化,也就得到了对应的优化。对于 Z i Z_{i} Zi ,用求伪逆的方式
在这里插入图片描述
对于 H i H_{i} Hi,这里会用到KKT条件,具体的推导这里也不展开了,在Chris Ding 2010的文章中也有推导,下面加了开方以及绝对值的式子,是Ding自己设计的策略。
在这里插入图片描述

非线性激活函数的加入及优化

在Deep Semi-NMF上加入了非线性的激活函数, g g g 代表激活函数,加了之后Deep Semi-NMF目标函数变成了
在这里插入图片描述
Deep WSF目标函数变成了
在这里插入图片描述
在优化策略上,pre-trained环节还是跟之前一样,一层一层地做。但是fine-tune环节现在就没办法用原来的分解方法求解了,因此作者用了随机梯度下降SGD或者Adam的方法来做,现在很多框架都可以自动求导了。

实验

数据集主要是三个 C M U P I E CMU PIE CMUPIE, X M 2 V T S XM2VTS XM2VTS, C A S I A W e b F a c e CASIA WebFace CASIAWebFace,除了 C M U P I E CMU PIE CMUPIE,其他都不是公开数据集。分类实验用了 C M U M u l t i − P I E CMU Multi-PIE CMUMultiPIE,也不是公开的
这篇文章主要做了几个传统非负矩阵分解的聚类实验,指标NMI与ACC,来证明算法的优越性,也对比了浙大蔡登的GNMF,国防科大管乃洋的NeNMF,很老套,也就不展开了。
作者也针对PIE数据集,针对创新点1做了相应的补充,结合SVM进行分类,多种标签数据是作者自己做的,相关的实验代码没有公开。

总结

  1. 该文的整体工作量还是非常足,以Deep Semi-NMF为baseline设计了多个模型,设计了多种优化。为矩阵分解模型在深度结构的探索做出了重要的贡献。
  2. 是传统矩阵分解算法与深度学习的结合,加入了非线的激活函数,加入随机梯度下降方法,验证了深度结构有利于增强矩阵分解的能力,具有很好的启发性。

个人的几个疑点

  1. 这篇文章的代码确实有不少问题,非线性的代码函数缺失,我也发过邮件向原作者请教,不过没收到回信。
  2. 在验证Deep Semi-NMF这种结构可以提取隐藏信息这个点上,文章只是最后做了个小小的实验补充,作为重要的创新点,个人认为说服力不足,实验用到的数据集也是作者自制的,无公开。
  3. 蔡登的GNMF对于PIE数据集的表现,要比本文中展示的高。同时也不知道为什么在验证创新点1的时候,没有对比GNMF。这也让我对实验结果存疑。
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
IEEE TPAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence)是一个涵盖模式识别、计算机视觉、图像处理和机器学习等领域的高质量期刊,其中也包括用于缺陷检测的研究。 以下是一些在IEEE TPAMI期刊上发表的用于缺陷检测的论文: 1. "Automatic Defect Detection in X-Ray Images Using Convolutional Neural Networks"(使用卷积神经网络自动检测X射线图像中的缺陷)-- 该论文提出了一种基于卷积神经网络(CNN)的自动缺陷检测方法,该方法可以应用于各种类型的X射线图像中的缺陷检测。 2. "Unsupervised Defect Detection in Textured Materials Using Convolutional Autoencoders"(使用卷积自动编码器在纹理材料中进行无监督缺陷检测)-- 该论文提出了一种基于卷积自动编码器(CAE)的无监督缺陷检测方法,该方法可以有效地检测纹理材料中的缺陷。 3. "A Hierarchical Approach to Defect Detection in Semiconductor Wafer Images"(半导体晶圆图像缺陷检测的分层方法)-- 该论文提出了一种基于分层方法的缺陷检测方法,可以应用于半导体晶圆图像中的缺陷检测。 4. "Deep Learning-Based Defect Detection in Semiconductor Manufacturing"(基于深度学习的半导体制造中的缺陷检测)-- 该论文提出了一种基于深度学习的缺陷检测方法,可以应用于半导体制造中的缺陷检测,并且在实验中取得了良好的结果。 这些论文都展示了IEEE TPAMI作为一个重要的期刊,提供了广泛的研究和应用领域,包括缺陷检测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值