链接:戳这里
E. Mike and Geometry Problem
time limit per test3 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that
). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Examples
input
3 2
1 2
1 3
2 3
output
5
input
3 3
1 3
1 3
1 3
output
3
input
3 1
1 2
2 3
3 4
output
6
Note
In the first example:
So the answer is 2 + 1 + 2 = 5.
题意:
给出n,k n个区间[l,r]
问任意k个区间交的区间长度的总长度是多少、
思路:
统计区间覆盖的个数,然后类似差分数组的方法统计出区间的覆盖次数
那么答案肯定是累加C(num,k)
取模用的是费马小
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<iomanip>
#include<cmath>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define maxn 0x3f3f3f3f
#define MAX 1000100
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef unsigned long long ull;
#define INF (1ll<<60)-1
#define mod 1000000007
using namespace std;
struct node{
int x,v;
node(int x=0,int v=0):x(x),v(v){}
bool operator < (const node &a)const{
return x<a.x;
}
}a[1000100];
ll fac[1000100];
ll ppow(ll k,ll n) {
ll c=1;
while(n) {
if(n%2) c=(c*k)%mod;
k=(k*k)%mod;
n>>=1;
}
return c;
}
ll C(ll a,ll b) {
return (((fac[b]*ppow((fac[a]*fac[b-a])%mod,mod-2)))%mod)%mod;
}
int n,K;
int main(){
fac[0]=1;
for(int i=1;i<=200000;i++) fac[i]=(fac[i-1]*i)%mod;
scanf("%d%d",&n,&K);
int cnt=0;
for(int i=1;i<=n;i++){
int l,r;
scanf("%d%d",&l,&r);
a[cnt++]=node(l-1,1);
a[cnt++]=node(r,-1);
}
sort(a,a+cnt);
ll last=-1e10,num=0,ans=0;
for(int i=0;i<cnt;i++){
if(num>=K) ans+=C(K,num)*((ll)a[i].x-last)%mod;
ans%=mod;
num+=a[i].v;
last=a[i].x;
}
printf("%I64d\n",ans);
return 0;
}