教你如何成为数据科学家(三)

有了前面的基础和统计学方面的知识,还需要学会编程


  1. Python Basics                                             python基础
  2. Working in Excel                                         学会处理excel(必须承认绝大部分数据都保持在excel)
  3. R Setup, R Studio                                       安装R ,R Studio (R是一个开源的统计分析工具)
  4. R Basics                                                      R基础
  5. Expressions                                                 表达式
  6. Variables                                                      变量
  7. IBM SPSSRapid Miner                               IBM SPSS(ibm的统计分析工具)RapidMiner(免费的数据挖掘工具)
  8. Vectors                                                        向量
  9. Matrices                                                       矩阵
  10. Arrays                                                          数组
  11. Factors                                                        因素
  12. Lists                                                            列表
  13. Data Frames                                               数据帧
  14. Reading CSV Data                                      读取CSV格式的数据
  15. Reading RAW Data                                     读取原始数据
  16. Subsetting Data                                           子集数据
  17. Manipulate Data Frames                              操作数据帧
  18. Functions                                                    函数
  19. Factor Analysis                                           因素分析
  20. Install Pkgs                                                 安装包(pkg是linux上的软件封装格式)
可以看到原作者主要推荐用python和R,从kaggle等数据处理平台上看,python是很受欢迎的常用语言,有很多强大的包,常见功能已经都模块花了,可以让


用户集中精神在处理逻辑上。而R的话,则是更加专业的统计分析工具,特别是相关的图形化显示方式,功能非常强大。


建议各位重点学习python和R。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值