机器学习
文章平均质量分 81
libodls
得过抑郁,写过JAVA,干过通信,做过项目,跑过销售,开过公司,混过政府,尚未成功,还需沉甸。
展开
-
机器学习笔记6——决策树
牙齿焦黄的肯定不是女神,可以直接pass掉。但胸围就不好说了,胸小的未必不是女神,胸大的也未必是,这就要结合身高、腰围和臀围等其他属性分别讨论,在讨论其他属性时也是如此。就像沿着树的分叉,往上下左右不同方向都有可能找到果实一样,这就是决策树。原创 2017-02-06 11:26:07 · 1011 阅读 · 0 评论 -
机器学习笔记2——模型评估与选择(一)
一、Doudog的困惑现在我要启动把doudog训练成“老司机”的任务。我每天带着doudog在计算机学院的教室里转,遇到一个女孩就告诉它这是不是女神,经过几天的训练,doudog的模型已经能够准确识别出所有计算机学院的女神了,即错误率(error rate)为0,精度(accuracy)为100%。我很高兴,于是带着它到校园里走走,测试一下这几天的学习效果。原创 2017-01-29 13:23:03 · 659 阅读 · 0 评论 -
机器学习笔记4——线性模型(一)
周志华教授的书中用到了不少数学公式和运算过程,为了方便理解,对于比较复杂的数学运算我先只分析其中的思维方法,不对具体运算做深究。一、什么是线性模型所谓线性(linear),是指量与量之间按比例、成直线的关系,即一次函数关系。一般来讲,如果两个变量呈线性关系,在平面坐标轴上画出来的图像是一条直线。非线性(non-linear)则指不按比例、不成直线的关系,如二次或多次函数关系。原创 2017-01-29 13:27:08 · 1327 阅读 · 0 评论 -
机器学习笔记5——线性模型(二)
四、线性判别分析线性判别分析(Linear Discriminant Analysis,LDA)的思想是:把全体美女集中到操场上,在操场上画出一条白直线,设法将每位美女都投影到这条线上,使女神的投影点尽可能集中到一起,女汉子的投影点尽可能集中到一起,而且女神们投影点的中心和女汉子们投影点的中心尽可能远。然后再来新的美女就看她的投影点落在哪里。方法不难,问题是怎么画这条白直线,即如何确定这条直线的方程 y = w' x?原创 2017-01-29 13:31:39 · 678 阅读 · 0 评论 -
机器学习笔记3——模型评估与选择(二)
凡事都要有个标准,仅仅看实验测试的表现还不够,衡量泛化能力还需要有一套评价标准,也叫做性能度量(performance measure)。当然标准也可以有好几套,从不同维度和侧重来评价。这同时也反映了模型的好坏是相对的,换一个标准评价的结果是不一样的。没有最好的,只有最合适的。原创 2017-01-29 13:25:11 · 3329 阅读 · 0 评论 -
对模拟退火算法的理解
受固体降温启发,当固体被加热时,它的内部粒子做无规则剧烈运动,排列杂乱,固体内能增加,当停止加热,粒子运动开始减慢,这些运动可以看作是任意两个分子之间交换位置或相对位置改变,一段时间后分子运动减慢,当达到基态时粒子的排列变得有序,这时内能最低。具此原理,解决TSP问题,Travelling Salesman Problem,旅行商人走遍m个城市的最短路径1、设定一条初始路径 x0:1,2,原创 2008-10-28 18:23:00 · 483 阅读 · 0 评论 -
机器学习笔记的一碗牛杂汤
鸡汤太淡,我加点料,来碗牛杂汤。在机关待久了有些事情就没那么积极了,近几日方才利用上下班路上在喜马拉雅断断续续听完“收视率第一”、“让所有娱乐明星汗颜”的罗胖子跨年演讲。印象比较深的是人工智能,也许是最近正在研究机器学习的缘故。我发现一个现象,许多人喜欢把人工智能说的天花乱坠、牛逼哄哄,社会变革马上就要到来,人类的命运将被改写,你们就等着被机器“淘汰”吧……。听他们说起来真的特带劲,眼珠子都跟着快速转动。快速动眼期结束后,回想起来,这些人貌似没有一个是真正从事人工智能研究的。比如说罗胖子,当然人家很原创 2017-01-29 13:30:17 · 668 阅读 · 1 评论