FIT-RAG:RAG架构是否正在趋向于标准化方法?

FIT-RAG针对RAG架构的不足提出了改进,包括双标签文档评分系统、自我知识识别器和令牌精简策略,旨在提高大型语言模型处理事实查询的效率和准确性。通过增强代理功能,RAG正演变成更复杂的决策系统,但透明度和引导性仍是挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:fit-rag-are-rag-architectures-settling-on-a-standardised-approach

2024 年 4 月 2 日

随着RAG的使用,漏洞开始显现,这些问题的解决方案也开始变得越来越相似。

介绍

随着技术的不断发展,我们注意到一个有趣的现象:人们普遍倾向于采用那些被认为是优秀设计的方案。

以提示工程为例,我们可以看到提示的发展历程:从最初的简单提示,演变成了包含占位符的模板,以便于插入各种变量。

这个过程进一步发展,催生了提示链的概念,并最终进化出了能够运用多种工具的自主代理。

RAG 也正沿着类似的路径发展。起初,RAG的设计似乎已经足够完善。但现在,我们正在RAG的架构中增加更多的智能元素,同时还整合了许多其他组成部分,以丰富RAG的整体结构。

四个初步考虑因素

首先,您将会注意到,在RAG架构中,提示结构的角色日益凸显,诸如Chain-of-Thought这类先进的提示技术正逐渐被采用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值