Python实现对实验数据的函数拟合
数据拟合会涉及到多种拟合方法,本文旨在把本人可能使用到的做一个总结
持续更新ing
1. List item # 线性拟合
from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt
def f1(x, k, b):
return k * x + b
x0 = cou_di # 需要拟合的一维数组,x
y0 = tdc_di # 需要拟合的一维数组,y
k1, b1 = optimize.curve_fit(f1, x0, y0)[0]
x1 = np.arange(0, 75, 0.01) # 30和75要对应x0的两个端点,0.01为步长
y1 = k1 * x1 + b1
f = plt.figure()
plt.plot(x1, y1, "blue", label='k=% .4f' % k1)
plt.plot(x0, y0, 'r.')
plt.xlabel('t')
plt.ylabel('Mt/g')
plt.legend()
f.show()