Python实现数据的线性拟合

Python实现对实验数据的函数拟合


数据拟合会涉及到多种拟合方法,本文旨在把本人可能使用到的做一个总结
持续更新ing

 1. List item  # 线性拟合

from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt

def f1(x, k, b):
    return k * x + b


x0 = cou_di  # 需要拟合的一维数组,x
y0 = tdc_di  # 需要拟合的一维数组,y

k1, b1 = optimize.curve_fit(f1, x0, y0)[0]
x1 = np.arange(0, 75, 0.01)  # 30和75要对应x0的两个端点,0.01为步长

y1 = k1 * x1 + b1
f = plt.figure()
plt.plot(x1, y1, "blue", label='k=% .4f' % k1)
plt.plot(x0, y0, 'r.')
plt.xlabel('t')
plt.ylabel('Mt/g')
plt.legend()
f.show()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值