/**
* 在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
*
* 一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
*
* 给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
*
*
* 示例 1:
*
* 输入:points = [[10,16],[2,8],[1,6],[7,12]]
* 输出:2
* 解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
* 示例 2:
*
* 输入:points = [[1,2],[3,4],[5,6],[7,8]]
* 输出:4
* 示例 3:
*
* 输入:points = [[1,2],[2,3],[3,4],[4,5]]
* 输出:2
* 示例 4:
*
* 输入:points = [[1,2]]
* 输出:1
* 示例 5:
*
* 输入:points = [[2,3],[2,3]]
* 输出:1
*
*
* 提示:
*
* 0 <= points.length <= 104
* points[i].length == 2
* -231 <= xstart < xend <= 231 - 1
*
* 来源:力扣(LeetCode)
* 链接:https://leetcode-cn.com/problems/minimum-number-of-arrows-to-burst-balloons
* 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
*/
class Solution
{
public:
int findMinArrowShots(vector<vector<int>>& points)
{
sort(points.begin(), points.end(), [](const vector<int>& a, const vector<int>& b) { return a[1] < b[1]; });
int count = 0;
int64_t end = INT64_MIN;
for (auto iter = points.begin(); iter != points.end(); iter++) {
if (iter->at(0) > end) { // 没有重叠
end = iter->at(1);
count++;
}
}
return count;
}
};