caffe学习
lien0906
这个作者很懒,什么都没留下…
展开
-
抽取任意层特征---caffe使用MemoryDataLayer从内存中加载数据
最近在搞caffe的应用,因为很多时候我们需要进行服务器来进行特征的抽取,所以我们需要很将单张图片丢入caffe的网络进行一次传递,这样就诞生了一个从内存中如何加载数据进入caffe的需求,这里我直接贴出代码来先:[cpp] view plaincopy#include // these need to b转载 2015-08-25 08:40:34 · 1965 阅读 · 1 评论 -
Ubuntu14.04编译caffe问题记录
http://blog.sina.com.cn/s/blog_721a75e50102wfig.html问题一:libunwind.so.8: undefinedreference//usr/lib/x86_64-linux-gnu/libunwind.so.8: undefined referenceto `lzma_index_end@XZ_5.0' //usr/lib/x转载 2017-06-13 22:38:53 · 1764 阅读 · 0 评论 -
基于caffe在已有模型上进行微调finetune
近期要对医学图像在caffe上进行微调,总算找到一篇不错的文章,转载过来,方便查阅。网址:http://www.cnblogs.com/denny402/p/5137534.htmlcaffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model。这个model将图片分为1000类,应该是目前为止最好的图片分类model了。假设我现在有一些自转载 2017-08-22 09:04:26 · 1818 阅读 · 0 评论 -
升级caffe所对应cudnn到v5以上版本
1.配置环境1. 本文在windows7+vs2013的环境下编译 ,CUDA版本8.0,cudnn版本5.12. CUDA下载地址:https://developer.nvidia.com/cuda-toolkit,cudnn:cudnn-8.0-windows7-x64-v5.1 下载地址:https://developer.nvidia.com/cudnn 3. 安装原创 2017-09-24 14:25:11 · 2640 阅读 · 0 评论 -
Caffe中实现多标签数据准备及训练
第一种说明方式:拷贝convert_imageset,生成新工程convert_imageset_multi_label 修改源码std::ifstream infile(argv[2]); std::vectorstring, std::vectorfloat>> > lines; std::string filename; s转载 2017-09-18 14:00:02 · 1036 阅读 · 1 评论 -
Caffe学习系列(3):视觉层(Vision Layers)及参数--各层参数尺度大小计算
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。1、Convolutio转载 2016-04-26 11:16:19 · 1001 阅读 · 0 评论 -
Caffe学习之数据层及参数设置
caffe的各种数据层在caffe.proto文件中有定义。通过对定义的caffe.proto文件进行编译,产生支持各种层操作的c++代码。后面将会详细解读caffe.proto文件(在caffe里就是当做一个自动代码生成工具来用)。本文主要介绍caffe可以读入数据的各种格式,方便后面采用caffe训练自己的数据数据的来源主要有以下几种:(1)高效的数据库(Level转载 2017-11-30 11:24:22 · 484 阅读 · 0 评论 -
caffe中如何可视化cnn各层的输出
正如caffe的examples所提,CNN model并不是一个黑盒,caffe提供了工具来查看cnn各层的所有输出1.查看CNN各层的activations值的结构(即每一层的输出)代码如下:# 显示每一层for layer_name, blob in net.blobs.iteritems(): print layer_name + '\t' + str(b转载 2017-12-06 09:30:34 · 659 阅读 · 0 评论 -
Caffe-Miscoroft无训练日志解决方法
Caffe的训练日志就是我们在命令窗口中看到的训练时打印出来的信息,我们可以利用这些信息画训练时lossaccruacy图,至于怎么利用这些信息画出这两个图是下一篇将要讲述的问题。我们先来看看这些保存在什么地方。如果你是使用的Caffe-Windows版本是happynear大神编译的老版本,那你应该会在bin文件下发现一个log文件夹,里面保存的就是我们需要的训练文件,文件名上有时间,可转载 2017-12-08 09:01:18 · 252 阅读 · 0 评论 -
caffe group参数理解
caffe Convolution层的convolution_param参数字典中有一个group参数,其意思是将对应的输入通道与输出通道数进行分组,比如输入数据大小为90x100x100x32 90是数据批大小 100x100是图像数据shape,32是通道数,要经过一个3x3x48的卷积,group默认是1,就是全连接的卷积层,如果group是2,那么对应要将输入的32个通道分成2个1转载 2017-12-08 10:11:05 · 4297 阅读 · 0 评论 -
Caffe的solver文件配置
solver.prototxt今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义。DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题。sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,转载 2017-12-06 09:17:54 · 307 阅读 · 0 评论 -
caffe添加新层教程
时间节点2016.04,即caffe重大更新后(每一种层都对应一个同名cpp和hpp文件)。描述一下本次要实现层的功能:正向直接copy传播,反向时将梯度放缩指定倍。这个层对一些特定的网络结构有很重要的辅助作用,比如有时我们的网络存在分支,但我们不希望某一分支影响之前层的更新,那么我们就将梯度放缩0倍。(1)创建HPP头文件diff_cutoff_layer.hpp转载 2017-06-08 16:05:44 · 345 阅读 · 0 评论 -
caffe绘制训练过程的loss和accuracy曲线
在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/extra/plot_tra转载 2017-06-08 17:57:26 · 1453 阅读 · 1 评论 -
caffe添加PrecisionRecallLosslayer层(一)
yunmingzhang17 和caffe官网 都有介绍添加层,但是不是很详细,我就简单实现一下这个加层,新手学习,请多多指教。 This is a post outlining the steps you need to take to create your own layer in CAFFE, a popular framework for wri转载 2017-06-13 21:14:27 · 410 阅读 · 0 评论 -
caffe源码解析之Layer层(1)
前言老实说,caffe中的layer层代码比较多,各种抽象看起来比较绕。官方关于Layer的教程写的很清楚,我根据这个文档,简单画了个图,再理解起来就方便了一些。layer.hpp和layer相关的头文件有:common_layers.hppdata_layers.hpplayer.hpploss_layers.hppneuron_layers.hppvision_l转载 2015-08-10 14:47:18 · 732 阅读 · 0 评论 -
Caffe中的损失函数解析
Caffe中的损失函数解析导言在有监督的机器学习中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function)。在Caffe中,目前已经实现了一些损失函数,包括最常见的L2损失函数,对比损失函数,信息增益损失函数等等。在这里做一个笔记,归纳总结Caffe中用到的不同的损失函数,以及分析它们各自适合的使用场景。欧式距离损失函数(Euclidean Lo转载 2015-08-10 16:07:24 · 1991 阅读 · 0 评论 -
cafffe中常用 blas 函数
常用 blas 函数Y=alpha * X +beta*Y template <>void caffe_cpu_axpbyfloat>(const int N, const float alpha, const float* X, const float beta, float* Y) { cbl转载 2015-08-10 16:18:58 · 1437 阅读 · 0 评论 -
DeepID算法实践
DeepID实践作者微博:zyx_1991小编推荐:张雨石(笔名)是北航软院研二的童鞋,一直关注深度学习在人脸识别方面的实践,主要研究方向也是深度学习在图像处理上的应用,写了多篇科普文章。本篇是 @龙星镖局 特别邀请他写的一篇实践性很强的科普文章,主题是牛逼哄哄的DeepID。没错,就是那个识别准确率在99.15%的汤晓鸥,王小刚团队发明的深度学习算法。另,本篇文章同步发表在作者的转载 2015-08-17 16:18:53 · 1441 阅读 · 0 评论 -
[caffe]深度学习之图像分类模型AlexNet解读
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之后)。在DL开源实现caffe的model样例中,它也给出了alexnet的复现,具体网络配置文件如下https://github.com/BVLC/caf转载 2015-09-11 17:42:45 · 824 阅读 · 0 评论 -
opencv:Load Caffe framework models
这个是怎么编译扩展包的呢?首先在here下载两个包:opencv_contrib和opencv ,然后按照正常的方法把opencv编译好:这里的opencv必须要这个链接的版本,我试了一下自己的版本是不可以编译的。[cpp] view plain copy cd opencv mkdir build cd转载 2016-04-01 16:58:56 · 1687 阅读 · 1 评论 -
caffe学习网站
http://www.cnblogs.com/louyihang-loves-baiyan/原创 2016-03-10 16:02:33 · 536 阅读 · 0 评论 -
Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。1、blobBlobs封装了运行时的数转载 2016-05-06 17:14:09 · 430 阅读 · 0 评论 -
caffe+Xubuntu14.04+cuda7.5+matlab2014b配置
1.第一步,网上下载Xubuntu的镜像文件.iso,下载网址为:http://cdimage.ubuntu.com/xubuntu/releases/14.04/release/2. 第二步,拿一个大于2g的u盘,利用UltroISO制作Xubuntu的镜像文件,网上资料大把;3.第三步,将电脑启动项改为u盘启动,安装Xubuntu系统;3. 第四步,利用网上caffe环境配置教程一原创 2016-05-10 16:00:18 · 1259 阅读 · 0 评论 -
ubuntu16.04+gtx1080+cuda8.0安装
一、准备工作a. ubuntu系统安装。交换空间选择逻辑分区,根目录选择主分区。为防止安装显卡后黑屏,初步选用英文版本系统安装。b. 显卡驱动和cuda8.0安装文件。2. 禁止集成的nouveau驱动(1)Ubuntu系统集成的显卡驱动程序是nouveau,它是第三方为NVIDIA开发的开源驱动,我们需要先将其屏蔽才能安装NVIDIA官方驱动。 将驱原创 2017-06-01 18:49:59 · 1151 阅读 · 0 评论 -
Ubuntu16.04 + cuda8.0 + GTX1080 + matlab14.04a + Opencv3.0 + caffe 安装教程
注意:本教程只针对以下配置而言,其他配置可能会出现其他问题,不承担任何责任。配置说明:双硬盘双系统,250G固态硬盘装了win10,4T机械硬盘装了Ubuntu16.04双显卡:集显加独显(GTX1080)先按照了win10,再装Ubuntu16.04,都是制作了U盘引导盘安装,没什么好说说明1、1080装机只能使用DVI接口的显示器,无转载 2017-06-01 19:37:05 · 2097 阅读 · 0 评论 -
Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input )
自己建立一个工程,调用libcaffe.lib ,成功编译,但是运行就会遇到报错F0519 14:54:12.494139 14504 layer_factory.hpp:77] Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input )转载 2017-06-21 15:41:40 · 498 阅读 · 0 评论 -
windows7下caffe2成功安装和编译
Win7下安装和编译caffe2,所需主要原材料:系统:win7vs版本:vs2015cuda版本:8.0cudnn版本:cudnn6.0caffe版本:caffe2python版本:python2.7下面进入干货阶段(假设vs2015,cuda和cudnn,python均已经安装成功):(1)下载python依赖 这一步建议事先要在已经安装pip的前提下进原创 2018-02-06 14:09:29 · 701 阅读 · 1 评论