小编在求职找找工作期间剑指offer上的算法题刷了很多遍,并且每道题小编当时都总结了一种最适合面试时手撕算法的最优解法。考虑到剑指offer算法题在面试中的高频出现,小编每天和大家分享一道剑指offer上的算法题,以及小编总结的答案。下面是第007道剑指offer算法题:
题目描述
把大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1)
注:是不是看着很简单,下面的优化思路是本道题需要分享的核心
另外, 斐波那契数列的最优解法(文末)基本90%以上的小伙伴都写不出来
方法一
- 递归法
斐波那契数列的标准公式为:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
根据公式可以直接写出: - 代码
public class Solution {
public int Fibonacci(int n) {
if(n<=1){
return n;
}
return Fibonacci(n-1) + Fibonacci(n-2);
}
}
3 复杂度
时间复杂度:O (2 ^ n)
空间复杂度:O(1)
方法二
优化递归
- 分析
递归会重复计算大量相同数据,我们用个数组把结果存起来!即DP思想 - 代码
public class Solution {
public int Fibonacci(int n) {
int ans[] = new int[40];
ans[0] = 0;
ans[1] = 1;
for(int i=2;i<=n;i++){
ans[i] = ans[i-1] + ans[i-2];
}
return ans[n];
}
}
3 复杂度
时间复杂度:O (n)
空间复杂度:O(n)
解法三
空间复杂度的优化
- 分析
其实我们可以发现每次就用到了最近的两个数,所以我们可以只存储最近的两个数
sum 存储第 n 项的值
one 存储第 n-1 项的值
two 存储第 n-2 项的值 - 代码
public class Solution {
public int Fibonacci(int n) {
if(n == 0){
return 0;
}else if(n == 1){
return 1;
}
int sum = 0;
int two = 0;
int one = 1;
for(int i=2;i<=n;i++){
sum = two + one;
two = one;
one = sum;
}
return sum;
}
}
3 复杂度
时间复杂度:O (n)
空间复杂度:O(1)
方法四
- 观察方法三发现,sum 只在每次计算第 n 项的时候用一下,其实还可以利用 sum 存储第 n-1 项,例如当计算完 f(5) 时 sum 存储的是 f(5) 的值,当需要计算 f(6) 时,f(6) = f(5) + f(4),sum 存储的 f(5),f(4) 存储在 one 中,由 f(5)-f(3) 得到
如图:
- 代码
public class Solution {
public int Fibonacci(int n) {
if(n == 0){
return 0;
}else if(n == 1){
return 1;
}
int sum = 1;
int one = 0;
for(int i=2;i<=n;i++){
sum = sum + one;
one = sum - one;
}
return sum;
}
}
3.复杂度
时间复杂度:O (n)
空间复杂度:O(1)
最后
这道题最优解法的时间复杂度其实是O(logN):不过比较少被问到,身边同学只被问到过一次,当时同学也没答出来。感兴趣的小伙伴可以网上搜一搜~
每天分享一道剑指offer算法题目,并且有最适合面试手撕算法环节的解法分享,欢迎大家关注我们~
其他文章
1. 学习笔记和学习资料汇总:前端 + 后端 + java + 大数据 + python + 100多实战项目 + C++
3. 零基础学爬虫
4. 零基础C++学习总结
欢迎关注个人公众号【菜鸟名企梦】,公众号专注:互联网求职面经、java、python、爬虫、大数据等技术分享:
公众号菜鸟名企梦后台发送“csdn”即可免费领取【csdn】和【百度文库】下载服务;
公众号菜鸟名企梦后台发送“资料”:即可领取5T精品学习资料、java面试考点和java面经总结,以及几十个java、大数据项目,资料很全,你想找的几乎都有