最长回文子串(manacher算法实现)

#include<iostream>
using namespace std;
#define M 1000


void Manacher(char *str,char*maxpalindrome )//str接受原始字符串  maxpalindrome存储最长回文子串
{

 int i,j;
 int maxrad=0,position=0;//记录最长回文半径和出现最长回文半径的地方
    int mx = 0, id;//id出现最长延伸位置的字符位置,向右延伸到的最远位置
 char temp[2*M+2];//用于存储处理后的字符串
 int rad[M];//回文半径数组
 int length =strlen(str);
    int num=2*strlen(str)+2;//记录插入字符后的字符串长度
  
 
 
 //处理原始字符串
 temp[0]='$';
 for(i=0;i<=length;i++)
 {
   temp[2*i+1]='#';
   temp[2*i+2]=str[i];
 }
 
 cout<<temp<<endl;
 
 
 
 
 
 //计算回文半径数组
    for(i=1; i<num; i++)
    {
        if( mx > i )
   rad[i] = rad[2*id-i]<(mx-i)?rad[2*id-i]:(mx-i);       
        else
            rad[i] = 1;//回文半径至少是1
        for(; temp[i+rad[i]] == temp[i-rad[i]]; rad[i]++);//找到最大回文半径

        if( rad[i] + i > mx )//向右延伸位置大于了前一个字符的回文串的向右最大延伸位置 刷新最大延伸位置
        {
            mx = rad[i] + i-1;//记录新的延伸位置 延伸位置是从1开始的
            id = i;//记录出现最长延伸字符的位置
        }
    }

 
 
 
 for(i=1;i<num;i++)//找到最大回文半径及出现最大回文半径的地方
  {
   if(rad[i]>maxrad)
   {
  maxrad=rad[i];//记录最大回文半径
  position=i;//记录出现最大回文半径的地方
   }
  }

 

 

    //根据回文半径和出现最大回文半径的位置,把最长回文子串拷贝出来
 for(i=0,j=position-maxrad+1;j<position+maxrad-1;j++)
 {
  
  if(temp[j]!='#'&&temp[j]!='$')
  {
  maxpalindrome[i]=temp[j];
   i++;
  }
 
  
  
 
 }
 maxpalindrome[i]='\0';

 

}


int main()
{
 char str[]="gdabebajuk";
    char maxpalindrome[M];
  Manacher(str,maxpalindrome);
  cout<<maxpalindrome<<endl;
  return 0;
 

 

}

 

 

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值