贪心与拟阵

贪心问题,套路深,技巧强。不过有一类可以尝试化为拟阵来解决。

拟阵matroid,广义拟阵greedoid

拟阵上的贪心算法。

Greedy(M,w):

    A={}
    sort M.S 单减 order by weight w
    for x in M.S:
        if A+{x} in M.T:
            A=A+{x}
    return A

   

步骤:

1 找出问题对应的拟阵及权重函数;(如果找不到那就换思路)

2 用上述算法求解。

对于更普遍的广义拟阵等见下面文献。

拟阵,广义拟阵,可行系统区别:

遗传性要求如果某集合X在集族S中,那么X的所有子集均在S中。

交换性要求任何一个集族中的集合X均可扩充为极大独立集。

可行性要求任何一个集族中的集合X存在一条从空集到达自己的路径(每次扩长度1):{x0},{x0,x1},...,{x0,x1,...}=X。

 

 

https://en.wikipedia.org/wiki/Greedoid#Examples

https://parasol.tamu.edu/~welch/teaching/411.f08/greedy.pdf

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值