2025年了但AI仍然很难用-第1批AI创业者对2024市场的总结和展望

2025年了,AI仍然没有“太大”作为

这儿的“太大”是打双引号的。所谓的太大是指在2023年业界抛出“万亿市场”这么一个概念来说的,所谓的万亿产业我们先要有一个认知。

什么叫万亿市场

这个单位还必须是$,这样的话这个市场差不多在10万亿,2023年业界预测是这么一个规模。因为只有这个级别才能拉动起至少4-5分之一的一个国家的GDP,就好比2000年初的internet。

但从2023年至2024年12月,我们看到的AI应用场景主要还是聚焦在TO C端的赋能上,对于TO B端效果不甚理想。究其原因为以下几点造成。

AI依旧不精准

无论是国内还是国外的AI,除去OpenAI的O1、O3,都存在几个弱点:

  1. 容易被历史会话上下文污染;
  2. 容易被embedding知识内容污染;
  3. Token预测制无法精准做到数学、化学、物理知识的推理;

这其实是Token预测制导致的,说到底现在的AI也是要打双引号的,因此才叫LLM(大模型),再说到底,AI是比较先进的SAAS化的大数据,它和大数据带来唯一不一样的地方就是以前用好大数据要写SPARK要写MAP REDUCE,现在普通人通过猫娘就可以用起来LLM了。

但是,猫娘这个东西也不是这么简单的,我们知道COT和吴恩达的prompt engineering里提出的4段式猫娘书写即:

  1. 立角色;
  2. 定目标;
  3. 描写问题;
  4. 精准补充需求;

光这4点,其实它是一个世界500强企业需要经过3-5年才可以从百人中培养出不足5%的中层或者高管人员才具备的逻辑思维的人才可以写到这一程度的猫娘的。这不是平头百姓可以看几个教程练300小时就可以写得出的。

AI的猫娘书写对于这个人来说本身这样的人就算没有AI,他已经很强了,他所需要的只是多些“手”来替他做事,那么现在有了AI,因此这样的人有了AI就可以提高效率还能降低成本。

所以AI目前这一特性导致了AI是无法为普通人所掌握的也不可能每个人都能用AI,最最多图个新鲜,用个5-10次(一般来说5次了不得了)然后再就是可能今后几个月也就不去碰了。

AI依旧成本不降

AI的成本其实还是没有降下来,不要去看每一千Token几厘¥,一个实用场景单一次会话平均至少是在5,000 Token,如果是TO C场景,我们就说日活1万(最最小的那种mini互联网)这一天多少成本知道不?我们可以自己算一笔帐。

其实就是对比Internet 2000年初AI的成本还是没有降下来,它还是没有成为一块基建!

我记得很清楚,1997年,家里拨号上网、1998年ADSL、2000年家里已经是上海有线通宽带了,一个月只有100,我用的是电信的,再到了后来,直接100兆,200兆,千兆进户,一年才几百块还无限用带宽。

这才叫“基建”。

AI的成本只有便宜到这个程度,那么它才可以成为基建。

由于它的成本依赖于超算中心和能源,连大漂亮国都受不了,所以导致了现在一些大厂其实是“亏着本”在吸人流。

业界的几个大佬话已经说了很白了:当前AI的本质是互联网经济!说白了还是要拉流量,拉到流量后自然就可以生出money money。

所以看似TO C端挺热闹,而实质还是挣“喝彩”。这个现象已经开始出现疲软。

AI的性能依旧提不上

并发能力跟不上实用

AI的并发依旧达不到internet的水平,以前动不动万级并发、千级并发的电商场景根本没法用AI,去几个云市场看看就能证实,买AI的API时,不要说千个,百个都没,10个并发一卖,为什么?算力其实就是性能跟不上,太耗资源了。

性能跟不上

这边和各位说一下,为什么CLAUDE在国内不让用或者CLAUDE的限制地区这么多(不止是国内)。

真正在国外上了CLAUDE后,你去升级PRO会员,你会发觉这么一个现象:

CLAUDE的会员分成T1-T5五个等级,每一个等级用到了一定的量,就不让你用了此时你连一个问题都提不了了,让你升一级会员才可以继续用。

同时呢,升到了会员后也只是50个并发,80个并发。。。说白了是CLAUDE的算力没跟上,不能让太多人用导致的这个“限制”。

但是回归到:AI依旧不准实际实用时如:医疗、科学或者是工控领域我们往往要用COT去做,至少3层AI AGENT Flow,此时AI在成本不降的情况下就导致了以下这样的一种情况。

企业投入在AI项目上的成本和消耗往往远超传统项目

由于上述这些问题的存在,企业认为的AI是降本增效,而实际AI项目在实施时往往需要大量人力在前期、上线后期进行手工运营上的“打标”、“纠偏”、“微调”才可以让一个项目如同婴儿学步一样“摇摇晃晃”前行。

而上述这3个步骤投入的人力、成本远超传统项目。正是由于AI目前不够精准,所以光第1轮纠偏就是7位数投下去连水漂都不见一个的。

此时项目还是不稳,好了。。。这个项目将会如何收场呢?

因此当下AI到底可以做什么?

当下的AI到底可以做什么

当下AI用在赋能个人上

首先,你必须是一个正在工作的人,你有一份主业,在主业上你可以用AI帮助你提高效率和get到新的技能。

  • 一个优秀的自媒体本来一周只可以写一篇万字爆文,有了AI他一周可以写4篇万字爆文;
  • 一个优秀的美工本来一周只可以出4个图,现在有了AI他一周可以出10副精美的图;
  • 一个优秀的程序员有了AI他可以前后端通吃;

所以虽然AI可以赋能个人,但还要加一个条件:这个人本身必须是很强的,有了AI更强。

如果一个人本身就是:就这样吧。。。先这样。。。明天再考虑。。。他并不会因为有了AI而变得强。

AI并不能改变个人,AI只会提高个人,而提高的前提是这个人要有意愿去使用AI。

用好AI不在于本身是否已经是学霸而在于思想上是否是学霸

本身是否已经很有能力这个能力指的是思想,即一个人的上进态度,对于一个不断要求上进的人,即使他是一个小白也一样可以学好AI。所以大家看到了,AI其实是这么一个东西:

以前你要GET一个新的技能,你要求师,要交很多钱。现在呢,一个月300,400就可以获得一个全能的24小时的老师。

所以这才是当下AI真正的本质。

记得我在1年多前的那篇“AI让我变成超人”里写到过,在未来不久,你可以购买到的算力决定了你的层次!

这句话再次被验证了。

但要加一个前提,你本身在“能力”即上进态度上就是一直具备强烈上进意识的一个人才能够用好AI。

2025了AI还会怎么发展

当下的Token预测制不变的情况下,现有所有的AI也只能做一件事,把成本想办法降下来。但是客观科学决定了Token预测制不被彻底颠覆,这个成本是不可能降得下来了!

多少降一下点吧。

想指望用AI挣钱的个人创业者需要谨慎

千万不要过于投入“成本”,你可以投入你的精力,但是控制好你的期望和支出。

学SD,MJ花了5位数,画了几个月终于开张了,卖出50块,30块的画、LOGO才是真正的现实。一个月靠所谓的AI可以实现。。。什么什么自由的。。。你只当听一个神话即可。

真的一年里让你可以挣回你的带宽费就已经不错了。

所以这就是上文我说一定一定记得,AI是对一个己有主业、本身很追求上进的人赋能用的,它只是工具,它不是魔杖。

AI在医疗领域肯定会有长足发展

人类对于生命、健康的投资永远是无限的。2000年初有一样东西叫“数字化医疗影像”技术,简称DICOM。

什么是DICOM呢?

Digital Imaging and Communications in Medicine,译为“医学数字影像和通信”,读成“戴靠姆”。

这是一种在医院中常见的数字化医疗影像技术,我们拍的CT、X光、MR等都是生成DICOM文件,以.dcm为后缀。 在医院中,DICOM的文件极大地简化了许多繁琐的流程。

门诊医生在医院信息系统(HIS)中录入病人信息后,相关数据立即同步到预约系统(RIS),这些信息直通放射科的拍片设备,患者只需按时前往拍片即可。生成的DICOM文件通过网络传输到医生电脑上,立即展示诊断结果,缩短了信息处理时间。 DICOM带来了哪些好处? 它省去了传统胶片的费用(DICOM出现之前光胶片的成本就在80-千把块钱),同时,也减轻了患者的负担,使得高昂的胶片成本成为历史。

其次,数字化的DICOM文件可以进行3D渲染,帮助医生从多个角度观察患处,提高诊断的准确性和效率。这种高科技手段还可以帮助医生在虚拟环境中进行提前手术模拟。

DICOM技术的另一个关键优势是它促进了远程医疗的发展。由于图像数字化,偏远地区的医生可以通过卫星和互联网与大城市的专家进行远程会诊,共享患者的DICOM文件,实现专家资源的跨地域调配。这对解决医疗资源分配不均的问题具有重要意义。

AI加持DICOM会发生什么事?

解析DICOM文件并非易事,涉及到复杂的计算机、图形和医疗知识,通常需要专业的编程语言如C++、Java。如今,AI的出现让这一切变得更加高效。AI技术可以自动解析和分析DICOM文件,显著缩短开发周期,大幅提升诊断和治疗的准确性和效率。正如OPENAI创始人“奥特曼”所说,AI将在医疗领域大放异彩。 AI技术的介入,让原本复杂的DICOM文件解析变得更加智能。通过不断的创新,AI医疗科技定将为我们带来更多惊喜。 

AI在实时对话上逐步成熟将促进教育

当于的AI真人语音发音技术已经完全成熟了,很便宜一个API调用,几百字一段的真人发音开发只需要30分钟时间接入。

同时语音输入虽然目前只有OpenAI一家做到实时的对话然后语音回答,但是把人类的声音捕捉到后变成文字输入然后再用语音输出也已经可以做到如:我走在步行街上这样的喧闹环境下,对于我说的30秒话转成文字的准确率到达96%了,这一块技术已经很成熟了。

这将大力促进、和刺激到各种学龄前以及各种远程教育应用的发展。

AI在生图上也已经成熟

不要拿AI生图当主业,而是当你的能力。比如说以前售前工程师依赖于开发团队要做原型图甚至是高保真,产品经理也有这个需求吧,甚至是一般公司内文员要制作点宣传活动一拉报。没有专业美工。。。是不是很痛苦。

现在SD、MJ已经发展到只要你好好学好好用不怕吃苦,就可以生出等同于5年甚至是7年经验的专业美工的作品了。

但还是那句话,自己用,想拿它变现。。。古人用9si1生来描述,我要告诉你的是10si无生。

各类文本应用场景特别是“客服”行业

对于各种客服行业包括但不限于:售后、讲解、导游、伴读、退换货/款等场景会取得长足的进步,必竟24*7且不要钱还少培训的客服那是很香的。

先写这么多吧。

总结

其实很简单,千万不要脑子发热钻到AI变现里,要把所有的精力放在AI提升技能上!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TGITCIC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值